Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale
-
According to the action-specific perception account, spatial perception is affected by the specific energetic costs required to perform an action. In the current experiments, we examined the effect of age on distance perception. Older and younger adults were asked to verbally estimate distance to a target placed in a hallway. ⋯ These differences across surfaces were not found for able, younger adults. These results suggest that the type of floor surface available influences perception of distances. Furthermore, the results suggest that perception is still sensitive to environmental differences that affect ability even as a perceiver ages.
-
Little is known about the neural correlates underlying the integration of working memory and emotion processing. We investigated the effects of low-frequency repetitive transcranial magnetic stimulation (rTMS) applied over the left or right dorsolateral prefrontal cortex (DLPFC) on emotional working memory. In a sham-controlled crossover design, participants performed an emotional 3-back task (EMOBACK) at baseline and after stimulation (1 Hz, 15 min, 110 % of the resting motor threshold) in two subsequent sessions. ⋯ We found lateralized rTMS effects in the EMOBACK task accuracy for fear-related words, with enhanced performance after rTMS applied over the right DLPFC and impaired performance after rTMS applied over the left DLPFC. No significant stimulation effect could be found for anger-related and neutral words. Our findings are the first to demonstrate a causal role of the right DLPFC in working memory for negative, withdrawal-related words and provide further support for a hemispheric lateralization of emotion processing.
-
Randomized Controlled Trial
A pharmaco-fMRI study on pain networks induced by electrical stimulation after sumatriptan injection.
Sumatriptan, a drug widely used to alleviate migraine headaches, has several somatosensory adverse effects, including tactile allodynia. To understand whether sumatriptan affects sensory and affective circuitries simultaneously, we investigated the responses of 12 healthy volunteers to electrical stimuli after infusion with either sumatriptan or saline. Using a double-blind crossover study design, we used functional magnetic resonance imaging (fMRI) to measure brain activation in different areas during electrical stimulation. ⋯ In contrast, activation following saline administration was observed primarily in the lateral pain system, including the primary sensory cortex, lateral SII, posterior insular cortex, anterior ACC, and lateral thalamus. Importantly, we found that VAS ratings and MPQ scores were increased after sumatriptan infusion, but not after saline administration. Our fMRI, VAS, and SF-MPQ findings suggest that sumatriptan plays a significant role in the affective dimension of pain and a minor role related to sensory discrimination.
-
Randomized Controlled Trial
Features of cortical neuroplasticity associated with multidirectional novel motor skill training: a TMS mapping study.
Given the evidence that the primary motor cortex (MI) consists of subpopulations of upper motor neurons tuned to different directional parameters of a motor movement, this study hypothesized that novel motor skill training involving either a bidirectional or more complex multidirectional tongue-typing movement should produce distinct training-related features of tongue MI neuroplasticity in humans. Novel motor skill training consisted of tongue typing using custom-made intra-oral keypads for 30-min over two consecutive days. The bidirectional keypad consisted of three sensors positioned along the upper palatal midline as a 3 × 1 array, whereas the multidirectional keypad consisted of nine sensors arranged as a 3 × 3 array that was centred along the upper palatal midline. ⋯ Bidirectional and multidirectional training were associated with increases and decreases in a number of cortical motor map sites from where tongue activity could be evoked, however; multidirectional training was associated with a greater number of cortical motor map sites with increased excitability and a shift in the centre of gravity of the motor map. No effects of training were found on the FDI TMS-MEP stimulus-response curves. This study revealed distinct training-related features of tongue MI neuroplasticity and proposes that a greater amount of functionally related neuronal populations may be 'trained' by the inclusion of different and more complex directional parameters within a novel motor task.
-
The importance of multisensory integration for human behavior and perception is well documented, as is the impact that temporal synchrony has on driving such integration. Thus, the more temporally coincident two sensory inputs from different modalities are, the more likely they will be perceptually bound. This temporal integration process is captured by the construct of the temporal binding window-the range of temporal offsets within which an individual is able to perceptually bind inputs across sensory modalities. ⋯ Specifically, we measured the ability of visual perceptual feedback training to induce changes in the multisensory temporal binding window. Visual perceptual training with feedback successfully improved temporal visual processing, and more importantly, this visual training increased the temporal precision across modalities, which manifested as a narrowing of the multisensory temporal binding window. These results are the first to establish the ability of unisensory temporal training to modulate multisensory temporal processes, findings that can provide mechanistic insights into multisensory integration and which may have a host of practical applications.