Neuroimaging clinics of North America
-
Neuroimaging Clin. N. Am. · Feb 2021
ReviewDynamic Brain Connectivity in Resting State Functional MR Imaging.
Dynamic functional connectivity adds another dimension to resting-state functional MR imaging analysis. In recent years, dynamic functional connectivity has been increasingly used in resting-state functional MR imaging, and several studies have demonstrated that dynamic functional connectivity patterns correlate with different physiologic and pathologic brain states. In fact, evidence suggests that dynamic functional connectivity is a more sensitive marker than static functional connectivity; therefore, it might be a promising tool to add to clinical functional neuroimaging. This article provides a broad overview of dynamic functional connectivity and reviews its general principles, techniques, and potential clinical applications.
-
Neuroimaging Clin. N. Am. · Feb 2021
ReviewImaging Glioblastoma Posttreatment: Progression, Pseudoprogression, Pseudoresponse, Radiation Necrosis.
Radiographic monitoring of posttreatment glioblastoma is important for clinical trials and determining next steps in management. Evaluation for tumor progression is confounded by the presence of treatment-related radiographic changes, making a definitive determination less straight-forward. The purpose of this article was to describe imaging tools available for assessing treatment response in glioblastoma, as well as to highlight the definitions, pathophysiology, and imaging features typical of true progression, pseudoprogression, pseudoresponse, and radiation necrosis.
-
Neuroimaging Clin. N. Am. · Feb 2021
ReviewMethods of Analysis: Functional MRI for Presurgical Planning.
There are many technical and nontechnical steps involved in a successful clinical functional MRI (fMRI) scan. The output from scanning and analysis can only be as good as the input, so task instruction and rehearsal are the most important steps during an clinical fMRI procedure. Properly pre-processed data significantly affects statistical analysis, which has a great impact on image interpretation. Even though there is general agreement on how to process clinical fMRI data, such as algorithms for head motion detection and correction, the theory and practicalities associated with data processing remain complex and constantly evolving.
-
Knowledge of functional neuroanatomy is essential to design the most appropriate clinical functional MR imaging (fMR imaging) paradigms and to properly interpret fMR imaging study results. The correlation between neuroanatomy and brain function is also useful in general radiologic practice, as it improves the radiologist's ability to read routine brain examinations. Functional MR imaging is used primarily to determine the areas involved in functioning of movements, speech, and vision. Preoperative fMR imaging findings also play a key role in the neurosurgeon's decision to perform a biopsy, a subtotal resection, or a maximal resection using awake craniotomy.
-
During the past decade, functional MR imaging has rapidly moved from the research environment into clinical practice. Preoperative functional MR imaging is now standard clinical practice not only in major academic institutions, but also in community neurosurgical and neuroradiologic practices. The clinical use of functional MR imaging will only increase in the years to come. Application of functional MR imaging (including resting-state functional MR imaging) to the context of neuropsychiatric diseases is likely to continue to advance.