The American journal of pathology
-
Traumatic brain injury due to blast exposure is currently the most prevalent of war injuries. Although secondary ocular blast injuries due to flying debris are more common, primary ocular blast exposure resulting from blast wave pressure has been reported among survivors of explosions, but with limited understanding of the resulting retinal pathologies. Using a compressed air-driven shock tube system, adult male and female C57BL/6 mice were exposed to blast wave pressure of 300 kPa (43.5 psi) per day for 3 successive days, and euthanized 30 days after injury. ⋯ Primary blast wave pressure resulted in activation of Müller glia, loss of photoreceptor cells, and an increase in phosphorylated tau in retinal neurons and glia. We found that 300-kPa blasts yielded no detectable cognitive or motor deficits, and no neurochemical or biochemical evidence of injury in the striatum or prefrontal cortex, respectively. These changes were detected 30 days after blast exposure, suggesting the possibility of long-lasting retinal injury and neuronal inflammation after primary blast exposure.
-
Diabetic macular edema (DME) is caused by blood-retinal barrier breakdown associated with retinal vascular hyperpermeability and inflammation, and it is the major cause of visual dysfunction in diabetic retinopathy. Adrenomedullin (ADM) is an endogenous peptide first identified as a strong vasodilator. ADM is expressed in the eyes and is up-regulated in various eye diseases, although the pathophysiological significance is largely unknown. ⋯ Evaluation of the transendothelial electrical resistance and fluorescein isothiocyanate-dextran permeability of an endothelial cell monolayer using TR-iBRB retinal capillary endothelial cells revealed that vascular endothelial growth factor enhanced vascular permeability but that co-administration of ADM suppressed the effect, in part by enhancing tight junction formation between endothelial cells. In addition, a comprehensive PCR array analysis showed that ADM administration suppressed various molecules related to inflammation and NF-κB signaling within retinas. From these results, we suggest that by exerting inhibitory effects on retinal inflammation, vascular permeability, and blood-retinal barrier breakdown, ADM could serve as a novel therapeutic agent for the treatment of DME.
-
Neuronal protein 3.1 (P311), a conserved RNA-binding protein, represents the first documented protein known to stimulate transforming growth factor (TGF)-β1 to -β3 translation in vitro and in vivo. Because TGF-βs play critical roles in fibrogenesis, we initiated efforts to define the role of P311 in skin scar formation. Here, we show that P311 is up-regulated in skin wounds and in normal and hypertrophic scars. ⋯ Finally, exogenous TGF-β1 to -β3, each restituted the normal scar phenotype. These studies demonstrate that P311 is required for the production of normal cutaneous scars and place P311 immediately up-stream of TGF-βs in the process of fibrogenesis. Conditions that decrease P311 levels could result in less tensile scars, which could potentially lead to higher incidence of dehiscence after surgery.
-
Mucus hypersecretion is an important pathologic feature of chronic obstructive pulmonary disease. Activating transcription factor 3 (ATF3) is an adaptive-response gene that participates in various cellular processes. However, little is known about its role in cigarette smoke (CS)-induced mucus hyperproduction. ⋯ In vivo, the Atf3-/- mice also displayed a significantly reduced mucus production relative to wild-type controls in response to chronic CS exposure. Furthermore, a chromatin immunoprecipitation assay revealed increased ATF3 binding to the MUC5AC promoter after CS treatment, and this transcriptional binding was significantly inhibited by knockdown of JUN, a subunit of activator protein-1. These results demonstrate that ATF3 may be involved in activator protein-1 signaling and transcriptional promotion of CS-induced MUC5AC expression in airway epithelial cells.
-
Duchenne muscular dystrophy is a severe and progressive striated muscle wasting disorder that leads to premature death from respiratory and/or cardiac failure. We have previously shown that treatment of young dystrophic mdx and dystrophin/utrophin null (dko) mice with BGP-15, a coinducer of heat shock protein 72, ameliorated the dystrophic pathology. We therefore tested the hypothesis that later-stage BGP-15 treatment would similarly benefit older mdx and dko mice when the dystrophic pathology was already well established. ⋯ We also examined whether BGP-15 treatment could ameliorate aspects of the cardiac pathology, and in young dko mice it reduced collagen deposition and improved both membrane integrity and systolic function. These results confirm BGP-15's ability to improve aspects of the dystrophic pathology but with differing efficacies in heart and skeletal muscles at different stages of the disease progression. These findings support a role for BGP-15 among a suite of pharmacological therapies for Duchenne muscular dystrophy and related disorders.