Human brain mapping
-
Human brain mapping · Jan 2015
A genome-wide supported psychiatric risk variant in NCAN influences brain function and cognitive performance in healthy subjects.
The A allele of the single nucleotide polymorphism (SNP) rs1064395 in the NCAN gene has recently been identified as a susceptibility factor for bipolar disorder and schizophrenia. NCAN encodes neurocan, a brain-specific chondroitin sulfate proteoglycan that is thought to influence neuronal adhesion and migration. Several lines of research suggest an impact of NCAN on neurocognitive functioning. ⋯ Better verbal memory performance was significantly associated with greater deactivation of the left temporal cluster during the fMRI task in subjects with GG genotype. The current data demonstrate that common genetic variation in NCAN influences both neural processing and cognitive performance in healthy subjects. Our study provides new evidence for a specific genetic influence on human brain function.
-
Human brain mapping · Jan 2015
Automated volumetry and regional thickness analysis of hippocampal subfields and medial temporal cortical structures in mild cognitive impairment.
We evaluate a fully automatic technique for labeling hippocampal subfields and cortical subregions in the medial temporal lobe in in vivo 3 Tesla MRI. The method performs segmentation on a T2-weighted MRI scan with 0.4 × 0.4 × 2.0 mm(3) resolution, partial brain coverage, and oblique orientation. Hippocampal subfields, entorhinal cortex, and perirhinal cortex are labeled using a pipeline that combines multi-atlas label fusion and learning-based error correction. ⋯ A larger cohort of 83 subjects is used to examine the effects of aMCI in the hippocampal region using both subfield volume and regional subfield thickness maps. Most significant differences between aMCI and healthy aging are observed bilaterally in the CA1 subfield and in the left Brodmann area 35. Thickness analysis results are consistent with volumetry, but provide additional regional specificity and suggest nonuniformity in the effects of aMCI on hippocampal subfields and MTL cortical subregions.
-
Human brain mapping · Jan 2015
Increased microstructural white matter correlations in left, but not right, temporal lobe epilepsy.
Microstructural white matter tract correlations have been shown to reflect known patterns of phylogenetic development and functional specialization in healthy subjects. The aim of this study was to establish intertract correlations in a group of controls and to examine potential deviations from normality in temporal lobe epilepsy (TLE). We investigated intertract correlations in 28 healthy controls, 21 left TLE (LTLE) and 23 right TLE (RTLE). ⋯ Our results confirm and extend previous work by showing that LTLE compared to RTLE patients display not only more extensive losses in microstructural orientation but also more aberrant intertract correlations. Aberrant correlations may be related to pathologic processes (i.e., seizure spread) or to adaptive processes aimed at preserving key cognitive functions. Our data suggest that tract correlations may have predictive value in distinguishing LTLE from RTLE, potentially moving diffusion imaging to a place of greater prominence in clinical practice.
-
Human brain mapping · Jan 2015
Characterizing the connectome in schizophrenia with diffusion spectrum imaging.
Schizophrenia is a complex psychiatric disorder characterized by disabling symptoms and cognitive deficit. Recent neuroimaging findings suggest that large parts of the brain are affected by the disease, and that the capacity of functional integration between brain areas is decreased. In this study we questioned (i) which brain areas underlie the loss of network integration properties observed in the pathology, (ii) what is the topological role of the affected regions within the overall brain network and how this topological status might be altered in patients, and (iii) how white matter properties of tracts connecting affected regions may be disrupted. ⋯ The centrality of the affected core was compromised in patients. Moreover the connectivity strength within the affected core, quantified with generalized fractional anisotropy and apparent diffusion coefficient, was altered in patients. Taken together, these findings suggest that the structural alterations and topological decentralization of the affected core might be major mechanisms underlying the schizophrenia dysconnectivity disorder.
-
Human brain mapping · Jan 2015
Cognitive impairment and resting-state network connectivity in Parkinson's disease.
The purpose of this work was to evaluate changes in the connectivity patterns of a set of cognitively relevant, dynamically interrelated brain networks in association with cognitive deficits in Parkinson's disease (PD) using resting-state functional MRI. Sixty-five nondemented PD patients and 36 matched healthy controls were included. Thirty-four percent of PD patients were classified as having mild cognitive impairment (MCI) based on performance in attention/executive, visuospatial/visuoperceptual (VS/VP) and memory functions. ⋯ The DMN displayed increased connectivity with medial and lateral occipito-parietal regions in MCI patients, associated with worse VS/VP performance, and with occipital reductions in cortical thickness. In line with data-driven results, seed-based analyses mainly revealed reduced within-DAN, within-DMN and DAN-FPN connectivity, as well as loss of normal DAN-DMN anticorrelation in MCI patients. Our findings demonstrate differential connectivity changes affecting the networks evaluated, which we hypothesize to be related to the pathophysiological bases of different types of cognitive impairment in PD.