Human brain mapping
-
Human brain mapping · Oct 2013
Cortical representation of pain in primary sensory-motor areas (S1/M1)--a study using intracortical recordings in humans.
Intracortical evoked potentials to nonnoxious Aβ (electrical) and noxious Aδ (laser) stimuli within the human primary somatosensory (S1) and motor (M1) areas were recorded from 71 electrode sites in 9 epileptic patients. All cortical sites responding to specific noxious inputs also responded to nonnoxious stimuli, while the reverse was not always true. Evoked responses in S1 area 3b were systematic for nonnoxious inputs, but seen in only half of cases after nociceptive stimulation. ⋯ Notably, area 3b, which responds massively to nonnoxious Aβ activation was less involved in the processing of noxious heat. S1 and M1 responses to noxious heat occurred at latencies comparable to those observed in the supra-sylvian opercular region of the same patients, suggesting a parallel, rather than hierarchical, processing of noxious inputs in S1, M1 and opercular cortex. This study provides the first direct evidence for a spinothalamic related input to the motor cortex in humans.
-
Human brain mapping · Oct 2013
Can spherical deconvolution provide more information than fiber orientations? Hindrance modulated orientational anisotropy, a true-tract specific index to characterize white matter diffusion.
Diffusion tensor imaging (DTI) methods are widely used to reconstruct white matter trajectories and to quantify tissue changes using the average diffusion properties of each brain voxel. Spherical deconvolution (SD) methods have been developed to overcome the limitations of the diffusion tensor model in resolving crossing fibers and to improve tractography reconstructions. However, the use of SD methods to obtain quantitative indices of white matter integrity has not been extensively explored. ⋯ Using simulations to describe diffusivity changes observed in normal brain development and disorders, we observed that the HMOA is able to identify white matter changes that are not detectable with conventional DTI indices. We also show that the HMOA index can be used as an effective threshold for in vivo data to improve tractography reconstructions and to better map white matter complexity inside the brain. In conclusion, the HMOA represents a true tract-specific and sensitive index and provides a compact characterization of white matter diffusion properties with potential for widespread application in normal and clinical populations.
-
Human brain mapping · Oct 2013
fMRI evidence of degeneration-induced neuropathic pain in diabetes: enhanced limbic and striatal activations.
Persistent neuropathic pain due to peripheral nerve degeneration in diabetes is a stressful symptom; however, the underlying neural substrates remain elusive. This study attempted to explore neuroanatomical substrates of thermal hyperalgesia and burning pain in a diabetic cohort due to pathologically proven cutaneous nerve degeneration (the painful group). By applying noxious 44°C heat stimuli to the right foot to provoke neuropathic pain symptoms, brain activation patterns were compared with those of healthy control subjects and patients with a similar degree of cutaneous nerve degeneration but without pain (the painless group). ⋯ Furthermore, activation maps of a simple regression analysis as well as a region of interest analysis revealed that responses in these limbic and striatal circuits paralleled the duration of neuropathic pain. However, in the painless group, BOLD signals in the primary somatosensory cortex and ACC were reduced. These results suggest that enhanced limbic and striatal activations underlie maladaptive responses after cutaneous nerve degeneration, which contributed to the development and maintenance of burning pain and thermal hyperalgesia in diabetes.
-
Human brain mapping · Oct 2013
Performing label-fusion-based segmentation using multiple automatically generated templates.
Classically, model-based segmentation procedures match magnetic resonance imaging (MRI) volumes to an expertly labeled atlas using nonlinear registration. The accuracy of these techniques are limited due to atlas biases, misregistration, and resampling error. Multi-atlas-based approaches are used as a remedy and involve matching each subject to a number of manually labeled templates. ⋯ MAGeT Brain segmentation improves the identification of the mouse anterior commissure (mean Dice Kappa values (κ = 0.801), but may be encountering a ceiling effect for hippocampal segmentations. Applying MAGeT Brain to human subcortical structures improves segmentation accuracy for all structures compared to regular model-based techniques (κ = 0.845, 0.752, and 0.861 for the striatum, globus pallidus, and thalamus, respectively). Experiments performed with three manually derived input templates suggest that MAGeT Brain can approach or exceed the accuracy of multi-atlas label-fusion segmentation (κ = 0.894, 0.815, and 0.895 for the striatum, globus pallidus, and thalamus, respectively).
-
Human brain mapping · Oct 2013
Brain plasticity in the motor network is correlated with disease progression in amyotrophic lateral sclerosis.
To test the influence of functional cerebral reorganization in amyotrophic lateral sclerosis (ALS) on disease progression. ⋯ Cortical Blood Oxygen Level Dependent (BOLD) signal changes occur in the brain of ALS patients during a simple hand-motor task when the motor deficit is still moderate. It is correlated with the rate of disease progression suggesting that brain functional rearrangement in ALS may have prognostic implications.