Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Observational Study
Removal of Circulating Neutrophil Extracellular Trap Components With An Immobilized Polymyxin B Filter: A Preliminary Study.
Components of neutrophil extracellular traps (NETs) are released into the circulation by neutrophils and contribute to microcirculatory disturbance in sepsis. Removing NET components (DNA, histones, and proteases) from the circulation could be a new strategy for counteracting NET-dependent tissue damage. We evaluated the effect of hemoperfusion with a polymyxin B (PMX) cartridge, which was originally developed for treating gram-negative infection, on circulating NET components in patients with septic shock, as well as the effect on phorbol myristate acetate (PMA)-stimulated neutrophils obtained from healthy volunteers. ⋯ In 10 patients with sepsis, direct hemoperfusion through filters with immobilized PMX significantly reduced plasma levels of MPO-DNA and NE-DNA. These ex vivo and in vivo findings demonstrated that hemoperfusion with PMX removes circulating NET components. Selective removal of circulating NET components from the blood could be effective for prevention/treatment of NET-related inappropriate inflammation and thrombogenesis in patients with sepsis.
-
Observational Study
Toll like receptor 2 and 9 expression on circulating neutrophils is associated with increased mortality in critically ill patients.
Toll-like receptors (TLRs) play an important role in inflammatory processes in critically ill patients by binding to pathogen-associated molecular patterns and danger-associated molecular patterns (DAMPs). Whether neutrophil or monocyte TLR expression patterns are associated with outcome in critical illness is unknown. ⋯ We provide evidence for prognostic properties of neutrophil TLR-2 and TLR-9 expression regarding 30-day mortality in unselected critically ill patients, independent from baseline clinical characteristics, and laboratory values. These findings suggest that specific TLR-dependent activation of the innate immune system via neutrophils possibly caused by cell damage and release of otherwise intracellular components may play a significant role in the pathophysiology of critical illness.
-
Cardiac dysfunction, a common complication from severe sepsis, is associated with increased morbidity and mortality. However, the molecular mechanisms of septic cardiac dysfunction are poorly understood. SIRT1, a member of the sirtuin family of NAD+-dependent protein deacetylases, is an important immunometabolic regulator of sepsis, and sustained SIRT1 elevation is associated with worse outcomes and organ dysfunction in severe sepsis. Herein, we explore the role of SIRT1 in septic cardiac dysfunction using a murine model of sepsis. ⋯ Our findings reveal that SIRT1 expression increases in isolated cardiomyocytes and cardiac tissue after sepsis inflammation. Moreover, rebalancing SIRT1 excess in late sepsis improves cardiac performance, suggesting that SIRT1 may serve as a therapeutic target for septic cardiomyopathy.
-
Rapid diagnosis accompanied by appropriate treatment is essential in the therapy of sepsis. However, there is no blood marker available, which reliably predicts sepsis and associated mortality. Therefore, the aim of the present study was to evaluate presepsin and endotoxin in comparison with established blood markers in patients undergoing emergency visceral surgery for abdominal infection. ⋯ The present study suggests that presepsin is a novel predictor of sepsis and mortality from sepsis in patients undergoing surgery for intra-abdominal infections. The findings of the present study should be validated in a larger cohort.
-
The hypoxia-sensitive endothelin (ET) system plays an important role in circulatory regulation through vasoconstrictor ETA and ETB2 and vasodilator ETB1 receptors. Sepsis progression is associated with microcirculatory and mitochondrial disturbances along with tissue hypoxia. Our aim was to investigate the consequences of treatments with the ETA receptor (ETA-R) antagonist, ETB1 receptor (ETB1-R) agonist, or their combination on oxygen dynamics, mesenteric microcirculation, and mitochondrial respiration in a rodent model of sepsis. ⋯ The administration of IRL-1620 countervailed the sepsis-induced hypotension (by >30%), normalized ExO2, and increased CPR. The combined ETA-R antagonist-ETB1-R agonist therapy reduced the plasma ET-1 level, significantly improved the intestinal microcirculation (by >41%), and reversed mitochondrial dysfunction. The additive effects of a combined ETA-R-ETB1-R-targeted therapy may offer a tool for a novel microcirculatory and mitochondrial resuscitation strategy in experimental sepsis.