American journal of respiratory and critical care medicine
-
Am. J. Respir. Crit. Care Med. · May 2024
Deep Learning Classification of Usual Interstitial Pneumonia Predicts Outcomes.
Rationale: Computed tomography (CT) enables noninvasive diagnosis of usual interstitial pneumonia (UIP), but enhanced image analyses are needed to overcome the limitations of visual assessment. Objectives: Apply multiple instance learning (MIL) to develop an explainable deep learning algorithm for prediction of UIP from CT and validate its performance in independent cohorts. Methods: We trained an MIL algorithm using a pooled dataset (n = 2,143) and tested it in three independent populations: data from a prior publication (n = 127), a single-institution clinical cohort (n = 239), and a national registry of patients with pulmonary fibrosis (n = 979). ⋯ Individuals classified as UIP positive by the algorithm had a significantly greater annual decline in FVC than those classified as UIP negative (-88 ml/yr vs. -45 ml/yr; n = 979; P < 0.01), adjusting for extent of lung fibrosis. Conclusions: Computerized assessment using MIL identifies clinically significant features of UIP on CT. Such a method could improve confidence in radiologic assessment of patients with interstitial lung disease, potentially enabling earlier and more precise diagnosis.