Critical care : the official journal of the Critical Care Forum
-
Review
Bench-to-bedside review: Platelets and active immune functions - new clues for immunopathology?
Platelets display a number of properties besides the crucial function of repairing damaged vascular endothelium and stopping bleeding; these are exploited to benefit patients receiving platelet component transfusions, which might categorize them as innate immune cells. For example, platelets specialize in pro-inflammatory activities, and can secrete a large number of molecules, many of which display biological response modifier functions. Platelets also express receptors for non-self-infectious and possibly non-infectious danger signals, and can engage infectious pathogens by mechanisms barely explained beyond observation. ⋯ How this occurs is still not fully understood. Recent findings from in-depth platelet signaling studies reveal the complexity of platelets and some of the ways they evolve along the immune continuum, from beneficial functions exemplified in endothelium repair to deleterious immunopathology as in systemic inflammatory response syndrome and acute vascular diseases. This review discusses the extended role of platelets as immune cells to emphasize their interactions with infectious pathogens sensed as potentially dangerous.
-
Editorial Review
Breaking old and new paradigms regarding urinary sodium in acute kidney injury diagnosis and management.
Urinary sodium (NaU) is one of the oldest parameters used in the evaluation of azotemia and oliguria. Over the past years, however, it has progressively been considered as obsolete and useless, especially in sepsis. ⋯ If intrarenal microcirculatory changes are more important in acute kidney injury (AKI) than changes in global renal blood flow, we speculate that decreases in NaU may be viewed as a possible marker of microcirculatory impairment in the kidneys. Recent findings by our group (some not yet published) in which sodium retentive capacity is preserved until advanced stages of AKI and the observation of decreases in NaU preceding increases in creatinine bring us to conclude that the new paradigm of abolishing NaU consideration from daily approaches to managing patients at risk for AKI must be reevaluated.
-
Septic syndromes remain the leading cause of mortality in intensive care units (ICU). Septic patients rapidly develop immune dysfunctions, the intensity and duration of which have been linked with deleterious outcomes. Decreased mRNA expressions of major histocompatibility complex (MHC) class II-related genes have been reported after sepsis. We investigated whether their mRNA levels in whole blood could predict mortality in septic shock patients. ⋯ Decreased CD74 mRNA expression significantly predicts 28-day mortality after septic shock. After validation in a larger multicentric study, this biomarker could become a robust predictor of death in septic patients.
-
Acute kidney injury (AKI) is a common and serious problem affecting millions and causing death and disability for many. In 2012, Kidney Disease: Improving Global Outcomes completed the first ever international multidisciplinary clinical practice guideline for AKI. The guideline is based on evidence review and appraisal, and covers AKI definition, risk assessment, evaluation, prevention, and treatment. ⋯ Appraisal of the quality of the evidence and the strength of recommendations followed the Grading of Recommendations Assessment, Development and Evaluation approach. Limitations of the evidence are discussed and a detailed rationale for each recommendation is provided. This review is an abridged version of the guideline and provides additional rationale and commentary for those recommendation statements that most directly impact the practice of critical care.
-
Diagnosis of sepsis is complicated by non-specific clinical definitions and delays in laboratory analysis using tests which may have very poor predictive values. The use of host biomarker signature sets, which when measured in combination have high predictive values, offers a paradigm shift forwards for rapid, near-patient diagnosis. These analyses more closely mirror the rapid blood chemistry and hematology analyses which often are used for near-patient testing and diagnosis.