Critical care : the official journal of the Critical Care Forum
-
The prediction of infection and its severity remains difficult in the critically ill. A novel, simple biomarker derived from five blood-cell derived parameters that characterize the innate immune response in routine blood samples, the intensive care infection score (ICIS), could be helpful in this respect. We therefore compared the predictive value of the ICIS with that of the white blood cell count (WBC), C-reactive protein (CRP) and procalcitonin (PCT) for infection and its severity in critically ill patients. ⋯ The data suggest that the ICIS is potentially useful for the prediction of infection and its severity in critically ill patients, non-inferiorly to CRP and PCT. In contrast to CRP and PCT, the ICIS can be determined routinely without extra blood sampling and lower costs, yielding results within 15 minutes.
-
Sapru et al. show in this issue of Critical Care that variants of thrombomodulin and the endothelial protein C receptor, but not protein C, are associated with mortality and organ dysfunction (ventilation-free and organ failure-free days) in ARDS. Hundreds of gene variants have been found prognostic in sepsis. However, none of these prognostic genomic biomarkers are used clinically. ⋯ Pharmacogenomics can enhance drug development in sepsis, which is very important because there is no approved drug for sepsis. Pharmacogenomics biomarkers must pass three milestones: scientific, regulatory, and commercial. Huge challenges remain but great opportunities for pharmacogenomics of sepsis are on the horizon.
-
Increasing evidence suggests that after the first pro-inflammatory hours, sepsis is characterized by the occurrence of severe immunosuppression. Several mechanisms have been reported to participate in sepsis-induced immune alterations affecting both innate and adaptive immunity. ⋯ Herein, perspectives regarding co-inhibitory receptors' contribution to lymphocyte exhaustion in sepsis will be discussed in the context of a recently published study investigating the potential of PD-1 molecule expression (i.e. PD-1 on lymphocytes, PD-L1 on monocytes) to predict mortality in septic shock patients.