The Journal of pharmacology and experimental therapeutics
-
J. Pharmacol. Exp. Ther. · Dec 1998
OPC-41061, a highly potent human vasopressin V2-receptor antagonist: pharmacological profile and aquaretic effect by single and multiple oral dosing in rats.
The pharmacological profile and the acute and chronic aquaretic effects of OPC-41061, a novel nonpeptide human arginine vasopressin (AVP) V2-receptor antagonist, were respectively characterized in HeLa cells expressing cloned human AVP receptors and in conscious male rats. OPC-41061 antagonized [3H]-AVP binding to human V2-receptors (Ki = 0.43 +/- 0.06 nM) more potently than AVP (Ki = 0. 78 +/- 0.08 nM) or OPC-31260 (Ki = 9.42 +/- 0.90 nM). OPC-41061 also inhibited [3H]-AVP binding to human V1a-receptors (Ki = 12.3 +/- 0.8 nM) but not to human V1b-receptors, indicating that OPC-41061 was 29 times more selective for V2-receptors than for V1a-receptors. ⋯ As the result of aquaresis, hemoconcentration was seen at 4 hr postdosing although, no differences were seen in serum osmolality, sodium, creatinine and urea nitrogen concentrations at 24 hr postdosing. Furthermore, there was no difference in serum AVP concentration, pituitary AVP content or the number and affinity of AVP receptors in the kidney and liver at trough throughout the study period. These results demonstrate that OPC-41061 is a highly potent human AVP V2-receptor antagonist and produces clear aquaresis after single and multiple dosing, suggesting the usefulness in the treatment of various water retaining states.
-
J. Pharmacol. Exp. Ther. · Dec 1998
Delta-opioid ligands reverse alfentanil-induced respiratory depression but not antinociception.
Evidence suggests both opioid mu and delta receptors may participate in the regulation of respiration at different central nervous system sites. In the past, the overlapping receptor specificity of various opioid drugs has made it difficult to dissect the receptor subtype-specific activities involved in respiratory regulation. The new family of delta receptor selective agents such as cyclic[D-Pen2, 5]enkephalin, deltorphins, (+)-4-((alpha-R)-alpha-((2S,5R)-4-allyl-2, 5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N,N-diethylbenzamide, naltrindole and H-Tyr-Tic(psi)[CH2NH]Phe-Phe-OH have now made it feasible to more clearly define the role of delta receptors in respiratory control. ⋯ The reversal of alfentanil-induced hypercapnia by these delta ligands was antagonized by a novel synthetic delta antagonist cis-4-(alpha-(4-((Z)-2-butenyl)-3, 5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N,N-diethylbenzamide. We propose that in this experimental respiration model, the delta antagonists naltrindole and H-Tyr-Tic(psi)[CH2NH]Phe-Phe-OH behave like delta agonists with low but sufficient intrinsic activities to reverse alfentanil-induced hypercapnia in rats. The results suggest that a function of the delta receptor is to modulate or counteract the respiratory depression induced by the mu receptor.