The Journal of pharmacology and experimental therapeutics
-
J. Pharmacol. Exp. Ther. · Aug 2009
Comparative StudyCB1 receptor-independent actions of SR141716 on G-protein signaling: coapplication with the mu-opioid agonist Tyr-D-Ala-Gly-(NMe)Phe-Gly-ol unmasks novel, pertussis toxin-insensitive opioid signaling in mu-opioid receptor-Chinese hamster ovary cells.
The CB(1) cannabinoid receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide hydrochloride (SR141716) has been shown by many investigators to inhibit basal G-protein activity, i.e., to display inverse agonism at high concentrations. However, it is not clear whether this effect is cannabinoid CB(1) receptor-mediated. Using the ligand-stimulated [(35)S]guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) assay, we have found that 10 microM SR141716 slightly but significantly decreases the basal [(35)S]GTPgammaS binding in membranes of the wild-type and CB(1) receptor knockout mouse cortex, parental Chinese hamster ovary (CHO) cells, and CHO cells stably transfected with micro-opioid receptors, MOR-CHO. ⋯ The inverse agonism of SR141716 was abolished, and DAMGO alone displayed weak, naloxone-insensitive stimulation, whereas the combination of DAMGO and SR141716 (10 microM each) resulted in a 169 +/- 22% stimulation of the basal activity (that was completely inhibited by the prototypic opioid antagonist naloxone) because of pertussis toxin (PTX) treatment to uncouple MORs from G(i)/G(o) proteins. SR141716 proved to bind directly to MORs with low affinity (IC(50) = 5.7 microM). These results suggest the emergence of novel, PTX-insensitive G-protein signaling that is blocked by naloxone when MORs are activated by the combination of DAMGO and SR141716.
-
J. Pharmacol. Exp. Ther. · Aug 2009
Comparative StudyTopiramate reduces excitability in the basolateral amygdala by selectively inhibiting GluK1 (GluR5) kainate receptors on interneurons and positively modulating GABAA receptors on principal neurons.
Topiramate [2,3:4,5-bis-O-(1-methylethylidene)-beta-D-fructopyranose sulfamate] is a structurally novel antiepileptic drug that has broad efficacy in epilepsy, but the mechanisms underlying its therapeutic activity are not fully understood. We have found that topiramate selectively inhibits GluK1 (GluR5) kainate receptor-mediated excitatory postsynaptic responses in rat basolateral amygdala (BLA) principal neurons and protects against seizures induced by the GluK1 kainate receptor agonist (R,S)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid (ATPA). Here, we demonstrate that topiramate also modulates inhibitory function in the BLA. ⋯ Thus, although topiramate inhibits GluK1 kainate receptor-mediated enhancement of interneuron firing, it promotes evoked GABA release, leading to a net inhibition of circuit excitability. In addition, we found that topiramate (0.3-10 microM) increased the amplitude of evoked, spontaneous, and miniature IPSCs in BLA pyramidal neurons, indicating an enhancement of postsynaptic GABA(A) receptor responses. Taken together with our previous findings, we conclude that topiramate protects against hyperexcitability in the BLA by suppressing the GluK1 kainate receptor-mediated excitation of principal neurons by glutamatergic afferents, blocking the suppression of GABA release from interneurons mediated by presynaptic GluK1 kainate receptors and directly enhancing GABA(A) receptor-mediated inhibitory currents.