The Journal of pharmacology and experimental therapeutics
-
J. Pharmacol. Exp. Ther. · May 2010
SRT1720 induces mitochondrial biogenesis and rescues mitochondrial function after oxidant injury in renal proximal tubule cells.
Mitochondrial biogenesis occurs under basal conditions and is an adaptive response initiated by cells to maintain energetic demands and metabolic homeostasis after injuries targeting mitochondrial function. Identifying pharmacological agents that stimulate mitochondrial biogenesis is a critical step in the development of new therapeutics for the treatment of these injuries and to test the hypothesis that these agents will expedite recovery of cell and organ function after acute organ injuries. In this study, we examined the effects of N-[2-[3-(piperazin-1-ylmethyl)imidazo[2,1-b][1,3]thiazol-6-yl]phenyl]quinoxaline-2-carboxamide (SRT1720) on mitochondrial biogenesis and function in primary cultures of renal proximal tubule cells (RPTCs). ⋯ Finally, SRT1720 treatment accelerated recovery of mitochondrial functions after acute oxidant injury. This study demonstrates that SRT1720 can induce mitochondrial biogenesis through SIRT1 activity and deacetylated PGC-1alpha, but not AMPK, in RPTCs within 24 h after oxidant injury. The results support further study of mitochondrial biogenesis as a repair process and a pharmacological target in acute organ injuries and disorders plagued by mitochondrial impairment.
-
J. Pharmacol. Exp. Ther. · May 2010
Evidence for the role of peroxisome proliferator-activated receptor-beta/delta in the development of spinal cord injury.
Several lines of evidence suggest a biological role for peroxisome proliferator-activated receptor (PPAR)-beta/delta in the pathogenesis many diseases. The aim of the present study was to evaluate the contribution of PPAR-beta/delta in the secondary damage in experimental spinal cord injury (SCI) in mice. To this purpose, we used 4-[[[2-[3-fluoro-4-(trifluoromethyl)phenyl]-4-methyl-5-thiazolyl]methyl]thio]-2-methylphenoxy]acetic acid (GW0742), a high-affinity PPAR-beta/delta agonist. ⋯ To elucidate whether the protective effects of GW0742 are related to activation of the PPAR-beta/delta receptor, we also investigated the effect of PPAR-beta/delta antagonist methyl 3-({[2-(methoxy)-4 phenyl]amino}sulfonyl)-2-thiophenecarboxylate (GSK0660) on the protective effects of GW0742. GSK0660 (1 mg/kg i.p. 30 min before treatment with GW0742) significantly blocked the effect of the PPAR-beta/delta agonist and thus abolished the protective effect. Our results clearly demonstrate that GW0742 treatment reduces the development of inflammation and tissue injury associated with spinal cord trauma.
-
J. Pharmacol. Exp. Ther. · May 2010
A synthetic 18-norsteroid distinguishes between two neuroactive steroid binding sites on GABAA receptors.
In the absence of GABA, neuroactive steroids that enhance GABA-mediated currents modulate binding of [35S]t-butylbicyclophosphorothionate in a biphasic manner, with enhancement of binding at low concentrations (site NS1) and inhibition at higher concentrations (site NS2). In the current study, compound (3alpha,5beta,17beta)-3-hydroxy-18-norandrostane-17-carbonitrile (3alpha5beta-18-norACN), an 18-norsteroid, is shown to be a full agonist at site NS1 and a weak partial agonist at site NS2 in both rat brain membranes and heterologously expressed GABAA receptors. 3alpha5beta-18-norACN also inhibits the action of a full neurosteroid agonist, (3alpha,5alpha,17beta)-3-hydroxy-17-carbonitrile (3alpha5alphaACN), at site NS2. ⋯ Electrophysiological studies using heterologously expressed GABAA receptors show that 3alpha5beta-18-norACN potently and efficaciously potentiates the GABA currents elicited by low concentrations of GABA but that it has low efficacy as a direct activator of GABAA receptors. 3alpha5beta-18-norACN also inhibits direct activation of GABAA receptors by 3alpha5alphaACN. 3alpha5beta-18-norACN also produces loss of righting reflex in tadpoles and mice, indicating that action at NS1 is sufficient to mediate the sedative effects of neurosteroids. These data provide insight into the pharmacophore required for neurosteroid efficacy at the NS2 site and may prove useful in the development of selective agonists and antagonists for neurosteroid sites on the GABAA receptor.
-
J. Pharmacol. Exp. Ther. · May 2010
A mouse model of severe halothane hepatitis based on human risk factors.
Halothane (2-bromo-2-chloro-1,1,1-trifluoro-ethane) is an inhaled anesthetic that induces severe, idiosyncratic liver injury, i.e., "halothane hepatitis," in approximately 1 in 20,000 human patients. We used known human risk factors (female sex, adult age, and genetics) as well as probable risk factors (fasting and inflammatory stress) to develop a murine model with characteristics of human halothane hepatitis. Female and male BALB/cJ mice treated with halothane developed dose-dependent liver injury within 24 h; however, the liver injury was severe only in females. ⋯ Coexposure of halothane-treated male mice to lipopolysaccharide to induce modest inflammatory stress converted their mild hepatotoxic response to a pronounced, female-like response. This is the first animal model of an idiosyncratic adverse drug reaction that is based on human risk factors and produces reproducible, severe hepatitis from halothane exposure with lesions characteristic of human halothane hepatitis. Moreover, these results suggest that a more robust innate immune response underlies the predisposition of female mice to halothane hepatitis.
-
J. Pharmacol. Exp. Ther. · May 2010
Evidence for de novo synthesis of lysophosphatidic acid in the spinal cord through phospholipase A2 and autotaxin in nerve injury-induced neuropathic pain.
We previously reported that lysophosphatidic acid (LPA) initiates nerve injury-induced neuropathic pain and its underlying mechanisms. In addition, we recently demonstrated that intrathecal injection of LPA induces de novo LPA production through the action of autotaxin (ATX), which converts lysophosphatidylcholine to LPA. Here, we examined nerve injury-induced de novo LPA production by using a highly sensitive biological titration assay with B103 cells expressing LPA1 receptors. ⋯ Both de novo LPA production and neuropathic pain-like behaviors were substantially abolished by intrathecal injection of arachidonyl trifluoromethyl ketone, a mixed inhibitor of cPLA2 and iPLA2, or bromoenol lactone, an iPLA2 inhibitor, at 1 h after injury. However, administration of these inhibitors at 6 h after injury had no significant effect on neuropathic pain. These findings provide evidence that PLA2- and ATX-mediated de novo LPA production in the early phase is involved in nerve injury-induced neuropathic pain.