The Journal of pharmacology and experimental therapeutics
-
J. Pharmacol. Exp. Ther. · Jan 2012
JWH-018 and JWH-073: Δ⁹-tetrahydrocannabinol-like discriminative stimulus effects in monkeys.
Products containing naphthalen-1-yl-(1-pentylindol-3-yl) methanone (JWH-018) and naphthalen-1-yl-(1-butylindol-3-yl) methanone (JWH-073) are emerging drugs of abuse. Here, the behavioral effects of JWH-018 and JWH-073 were examined in one behavioral assay selective for cannabinoid agonism, rhesus monkeys (n = 4) discriminating Δ⁹-tetrahydrocannabinol (Δ⁹-THC; 0.1 mg/kg i.v.), and another assay sensitive to cannabinoid withdrawal, i.e., monkeys (n = 3) discriminating the cannabinoid antagonist rimonabant (1 mg/kg i.v.) during chronic Δ⁹-THC (1 mg/kg s.c. 12 h) treatment. Δ⁹-THC, JWH-018, and JWH-073 increased drug-lever responding in monkeys discriminating Δ⁹-THC; the ED₅₀ values were 0.044, 0.013, and 0.058 mg/kg, respectively and the duration of action was 4, 2, and 1 h, respectively. Rimonabant (0.32-3.2 mg/kg) produced surmountable antagonism of Δ⁹-THC, JWH-018, and JWH-073. ⋯ These results suggest that Δ⁹-THC, JWH-018, and JWH-073 act through the same receptors to produce Δ⁹-THC-like subjective effects and attenuate Δ⁹-THC withdrawal. The relatively short duration of action of JWH-018 and JWH-073 might lead to more frequent use, which could strengthen habitual use by increasing the frequency of stimulus-outcome pairings. This coupled with the possible greater efficacy of JWH-018 at cannabinoid 1 receptors could be associated with greater dependence liability than Δ⁹-THC.
-
J. Pharmacol. Exp. Ther. · Jan 2012
Role of mitochondrial oxidants in an in vitro model of sepsis-induced renal injury.
Oxidative stress has been implicated to play a major role in multiorgan dysfunction during sepsis. To study the mechanism of oxidant generation in acute kidney injury (AKI) during sepsis, we developed an in vitro model of sepsis using primary cultures of mouse cortical tubular epithelial cells exposed to serum (2.5-10%) collected from mice at 4 h after induction of sepsis by cecal ligation and puncture (CLP) or Sham (no sepsis). CLP serum produced a concentration-dependent increase in nitric oxide (NO) (nitrate + nitrite) release at 6 h and cytotoxicity (lactate dehydrogenase release) at 18 h compared with Sham serum treatment. ⋯ MnTmPyP blocked mitochondrial superoxide and peroxynitrite generation produced by CLP serum but had no effect on NO levels. Although MnTmPyP did not block the initial CLP serum-induced fall in mitochondrial membrane potential, it allowed mitochondrial membrane potential to recover. Data from this in vitro model suggest a time-dependent generation of mitochondrial oxidants, mitochondrial dysfunction, and renal tubular epithelial cell injury and support the therapeutic potential of manganese porphyrin compounds in preventing sepsis-induced AKI.
-
J. Pharmacol. Exp. Ther. · Jan 2012
Pleiotropic opioid regulation of spinal endomorphin 2 release and its adaptations to opioid withdrawal are sexually dimorphic.
We studied adaptations to acute precipitated opioid withdrawal of spinal μ-opioid receptor (MOR)-coupled regulation of the release of endomorphin 2 (EM2). The release of this highly MOR-selective endogenous opioid from opioid-naive spinal tissue of male rats is subjected to MOR-coupled positive as well as negative modulation via cholera toxin-sensitive G(s) and pertussis toxin-sensitive G(i)/G(o), respectively. The net effect of this concomitant bidirectional modulation is inhibitory. ⋯ The male-specific adaptations to chronic morphine that shift the relative predominance of opposing dual G protein-coupled MOR pathways provides a mechanism for mitigating inhibitory MOR signaling without losing MOR-coupled feedback regulation. These adaptations enable using endogenous EM2 as a substitute for morphine that had been precipitously removed. The sexually dimorphic functionality and regulation of spinal EM2/MOR-coupled signaling suggest the clinical utility of using sex-specific treatments for addiction that harness the activity of endogenous opioids.