The Journal of pharmacology and experimental therapeutics
-
J. Pharmacol. Exp. Ther. · Sep 2012
Nodakenin suppresses lipopolysaccharide-induced inflammatory responses in macrophage cells by inhibiting tumor necrosis factor receptor-associated factor 6 and nuclear factor-κB pathways and protects mice from lethal endotoxin shock.
Nodakenin, a coumarin isolated from the roots of Angelicae gigas, has been reported to possess neuroprotective, antiaggregatory, antibacterial, and memory-enhancing effects. In the present study, we investigated the anti-inflammatory effects of nodakenin by examining its in vitro inhibitory effects on inducible nitric-oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and proinflammatory cytokines in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages and mouse peritoneal macrophages and its in vivo effects on LPS-induced septic shock in mice. Our results indicate that nodakenin concentration-dependently inhibits iNOS and COX-2 at the protein, mRNA, and promoter binding levels, and these inhibitions cause attendant decreases in the production of nitric oxide (NO) and prostaglandin E₂ (PGE₂). ⋯ In addition, nodakenin was found to significantly inhibit the LPS-induced binding of transforming growth factor-β-activated kinase 1 to tumor necrosis factor receptor-associated factor 6 (TRAF6) by reducing TRAF6 ubiquitination. Pretreatment with nodakenin reduced the serum levels of NO, PGE₂, and proinflammatory cytokines and increased the survival rate of mice with LPS-induced endotoxemia. Taken together, our data suggest that nodakenin down-regulates the expression of the proinflammatory iNOS, COX-2, TNF-α, IL-6, and IL-1β genes in macrophages by interfering with the activation of TRAF6, thus preventing NF-κB activation.
-
J. Pharmacol. Exp. Ther. · Sep 2012
Apparent inverse relationship between cannabinoid agonist efficacy and tolerance/cross-tolerance produced by Δ⁹-tetrahydrocannabinol treatment in rhesus monkeys.
Synthetic cannabinoids (CBs) [naphthalen-1-yl-(1-pentylindol-3-yl) methanone (JWH-018) and naphthalen-1-yl-(1-butylindol-3-yl) methanone (JWH-073)] are marketed, sold, and used as alternatives to cannabis. Synthetic CBs appear to have effects similar to those of Δ⁹-tetrahydrocannabinol (Δ⁹-THC), the drug primarily responsible for the behavioral effects of cannabis. However, synthetic CB products produce atypical effects (e.g., hypertension, seizures, and panic attacks). ⋯ Three days of Δ⁹-THC did not result in cross-tolerance to CP-55,940, JWH-073, and JWH-018; in contrast, as reported previously, 3 days of Δ⁹-THC treatment decreased sensitivity to Δ⁹-THC 3-fold. Fourteen days of Δ⁹-THC decreased sensitivity to Δ⁹-THC, CP-55,940, JWH-018, and JWH-073 9.2-fold, 3.6-fold, 4.3-fold, and 5.6-fold, respectively. The greater loss of sensitivity to Δ⁹-THC relative to CP-55,940 and JWH-018 suggests that differences in CB₁ receptor agonist efficacy are important in vivo and might underlie differences in the dependence liability and adverse effects of synthetic CBs versus cannabis.
-
J. Pharmacol. Exp. Ther. · Sep 2012
δ-Opioid mechanisms for ADL5747 and ADL5859 effects in mice: analgesia, locomotion, and receptor internalization.
N,N-diethyl-4-(5-hydroxyspiro[chromene-2,4'-piperidine]-4-yl) benzamide (ADL5859) and N,N-diethyl-3-hydroxy-4-(spiro[chromene-2,4'-piperidine]-4-yl)benzamide (ADL5747) are novel δ-opioid agonists that show good oral bioavailability and analgesic and antidepressive effects in the rat and represent potential drugs for chronic pain treatment. Here, we used genetic approaches to investigate molecular mechanisms underlying their analgesic effects in the mouse. We tested analgesic effects of ADL5859 and ADL5747 in mice by using mechanical sensitivity measures in both complete Freund's adjuvant and sciatic nerve ligation pain models. ⋯ In conclusion, both ADL5859 and ADL5747 showed efficient pain-reducing properties in the two models of chronic pain. Their effects were mediated by δ-opioid receptors, with a main contribution of receptors expressed on peripheral Nav1.8-positive neurons. The lack of in vivo receptor internalization and locomotor activation, typically induced by SNC80, suggests agonist-biased activity at the receptor for the two drugs.