The Journal of pharmacology and experimental therapeutics
-
J. Pharmacol. Exp. Ther. · Jun 2010
Protection against acute kidney injury via A(1) adenosine receptor-mediated Akt activation reduces liver injury after liver ischemia and reperfusion in mice.
Hepatic ischemia reperfusion (IR) injury causes acute kidney injury (AKI). However, the contribution of AKI to the pathogenesis of liver IR injury is unclear. Furthermore, controversy still exists regarding the role of A(1) adenosine receptors (A(1)ARs) in AKI. ⋯ Renal A(1)AR-mediated kidney protection plays a crucial role in protecting the liver after IR because: 1) selective unilateral renal lentiviral overexpression of human A(1)ARs [enhanced green fluorescent protein (EGFP)-huA(1)AR] in A(1)KO mice protected against both kidney and liver injury sustained after liver IR, 2) removal of the EGFP-huA(1)AR lentivirus-injected kidney from A(1)KO mice abolished both renal and hepatic protection after liver IR, and 3) bilateral nephrectomy before hepatic ischemia abolished the protective effects of A(1)AR activation in A(1)WT mice. Finally, inhibition of Akt, but not extracellular signal-regulated kinase mitogen-activated protein kinase, prevented the kidney and liver protection afforded by A(1)AR agonist treatment. Taken together, we show that endogenous and exogenous activation of renal A(1)ARs protect against liver and kidney injury after liver IR in vivo via pathways involving Akt activation.
-
J. Pharmacol. Exp. Ther. · Jun 2010
Cisplatin and oxaliplatin inhibit gap junctional communication by direct action and by reduction of connexin expression, thereby counteracting cytotoxic efficacy.
Cisplatin [cis-diamminedichloroplatinum(II)]/oxaliplatin [1,2-diamminocyclohexane(trans-1)oxolatoplatinum(II)] toxicity is enhanced by functional gap junctions between treated cells, implying that inhibition of gap junctions may decrease cytotoxic activity of these platinum-based agents. This study investigates the effect of gap junction modulation by cisplatin/oxaliplatin on cytotoxicity in a transformed cell line. The effects were explored using junctional channels expressed in transfected HeLa cells and purified hemichannels. ⋯ However, higher concentrations strongly inhibited GJIC, and this counteracted the enhancing effect of greater cell density on toxicity. The present results indicate that inhibition of GJIC by cisplatin/oxaliplatin decreases their cytotoxicity. Direct inhibition of GJIC and reduction of connexin expression by cisplatin/oxaliplatin may thereby compromise the effectiveness of these compounds and be a factor in the development of resistance to this class of chemotherapeutic agents.
-
J. Pharmacol. Exp. Ther. · May 2010
SRT1720 induces mitochondrial biogenesis and rescues mitochondrial function after oxidant injury in renal proximal tubule cells.
Mitochondrial biogenesis occurs under basal conditions and is an adaptive response initiated by cells to maintain energetic demands and metabolic homeostasis after injuries targeting mitochondrial function. Identifying pharmacological agents that stimulate mitochondrial biogenesis is a critical step in the development of new therapeutics for the treatment of these injuries and to test the hypothesis that these agents will expedite recovery of cell and organ function after acute organ injuries. In this study, we examined the effects of N-[2-[3-(piperazin-1-ylmethyl)imidazo[2,1-b][1,3]thiazol-6-yl]phenyl]quinoxaline-2-carboxamide (SRT1720) on mitochondrial biogenesis and function in primary cultures of renal proximal tubule cells (RPTCs). ⋯ Finally, SRT1720 treatment accelerated recovery of mitochondrial functions after acute oxidant injury. This study demonstrates that SRT1720 can induce mitochondrial biogenesis through SIRT1 activity and deacetylated PGC-1alpha, but not AMPK, in RPTCs within 24 h after oxidant injury. The results support further study of mitochondrial biogenesis as a repair process and a pharmacological target in acute organ injuries and disorders plagued by mitochondrial impairment.
-
J. Pharmacol. Exp. Ther. · May 2010
Evidence for the role of peroxisome proliferator-activated receptor-beta/delta in the development of spinal cord injury.
Several lines of evidence suggest a biological role for peroxisome proliferator-activated receptor (PPAR)-beta/delta in the pathogenesis many diseases. The aim of the present study was to evaluate the contribution of PPAR-beta/delta in the secondary damage in experimental spinal cord injury (SCI) in mice. To this purpose, we used 4-[[[2-[3-fluoro-4-(trifluoromethyl)phenyl]-4-methyl-5-thiazolyl]methyl]thio]-2-methylphenoxy]acetic acid (GW0742), a high-affinity PPAR-beta/delta agonist. ⋯ To elucidate whether the protective effects of GW0742 are related to activation of the PPAR-beta/delta receptor, we also investigated the effect of PPAR-beta/delta antagonist methyl 3-({[2-(methoxy)-4 phenyl]amino}sulfonyl)-2-thiophenecarboxylate (GSK0660) on the protective effects of GW0742. GSK0660 (1 mg/kg i.p. 30 min before treatment with GW0742) significantly blocked the effect of the PPAR-beta/delta agonist and thus abolished the protective effect. Our results clearly demonstrate that GW0742 treatment reduces the development of inflammation and tissue injury associated with spinal cord trauma.
-
J. Pharmacol. Exp. Ther. · May 2010
A synthetic 18-norsteroid distinguishes between two neuroactive steroid binding sites on GABAA receptors.
In the absence of GABA, neuroactive steroids that enhance GABA-mediated currents modulate binding of [35S]t-butylbicyclophosphorothionate in a biphasic manner, with enhancement of binding at low concentrations (site NS1) and inhibition at higher concentrations (site NS2). In the current study, compound (3alpha,5beta,17beta)-3-hydroxy-18-norandrostane-17-carbonitrile (3alpha5beta-18-norACN), an 18-norsteroid, is shown to be a full agonist at site NS1 and a weak partial agonist at site NS2 in both rat brain membranes and heterologously expressed GABAA receptors. 3alpha5beta-18-norACN also inhibits the action of a full neurosteroid agonist, (3alpha,5alpha,17beta)-3-hydroxy-17-carbonitrile (3alpha5alphaACN), at site NS2. ⋯ Electrophysiological studies using heterologously expressed GABAA receptors show that 3alpha5beta-18-norACN potently and efficaciously potentiates the GABA currents elicited by low concentrations of GABA but that it has low efficacy as a direct activator of GABAA receptors. 3alpha5beta-18-norACN also inhibits direct activation of GABAA receptors by 3alpha5alphaACN. 3alpha5beta-18-norACN also produces loss of righting reflex in tadpoles and mice, indicating that action at NS1 is sufficient to mediate the sedative effects of neurosteroids. These data provide insight into the pharmacophore required for neurosteroid efficacy at the NS2 site and may prove useful in the development of selective agonists and antagonists for neurosteroid sites on the GABAA receptor.