Resp Care
-
These changes are proposed as a starting point for the more logical application of ventilator terminology and are for your consideration and debate. It is our contention that this system can be easily adopted once the basics of the classification system are understood.
-
Because of the design characteristics, flow-triggering appears to offer measurable advantages over pressure-triggering, particularly during spontaneous breathing. During the trigger phase, flow-triggering provides a relatively shorter time delay than pressure-triggering. A trigger sensitivity that does not cause autocycling can be set while a short time delay is maintained. ⋯ With a flow-by or demand-flow system, the circuit pressure-sensing site influences the flow-pressure control algorithm in the post-trigger phase only. In microprocessor-based ventilators, the shortcomings seen with pressure-triggering during the post-trigger phase can unquestionably be overcome with a better ventilator algorithm design or the application of a small amount of pressure support. However, during the trigger phase, the impact of this effort is less clear.
-
Although many modern ICU ventilators offer the option of electronic communication, most of these systems are not used because there is a huge communication gap between the ventilator and the computer it might be connected to. When such systems are now used, a large part of what is communicated is artifactual and misleading. We need to overcome both legal and knowledge barriers in the effort to provide seamless communication between ventilators and computers. With regard to the specific issues raised in this paper, here are our answers. Issue #1: Is it essential to have a digital electronic communication port on an ICU ventilator? ⋯ We recommend an optimal algorithm for automated respiratory care charting that has been suggested. Sampling frequency: Sample data from the ventilator every 10 seconds. Ventilator-setting changes: Report every new setting if change lasts more than 3 minutes. Measured respiratory care data: Filter raw MIB-collected data with a 3-minute moving-median filter. Report one filtered value every hour for each variable. In addition, use a threshold table (Table 3) to define significant events. Report changes that remain above threshold more than 3 minutes. Report all measured respiratory-care data 1 minute following any ventilator-mode changes.