Resp Care
-
In health, secretions produced in the respiratory tract are cleared by mucociliary transport, cephalad airflow bias, and cough. In disease, increased secretion viscosity and volume, dyskinesia of the cilia, and ineffective cough combine to reduce secretion clearance, leading to increased risk of infection. In obstructive lung disease these conditions are further complicated by early collapse of airways, due to airway compression, which traps both gas and secretions. ⋯ Directed cough, forced expiratory technique, active cycle of breathing, and autogenic drainage are all more effective than placebo and comparable in therapeutic effects to postural drainage; they require no special equipment or care-provider assistance for routine use. Researchers have suggested that standard chest physical therapy with active cycle of breathing and forced expiratory technique is more effective than chest physical therapy alone. Evidence-based reviews have suggested that, though successful adoption of techniques such as autogenic drainage may require greater control and training, patients with long-term secretion management problems should be taught as many of these techniques as they can master for adoption in their therapeutic routines.
-
Pulmonary mucociliary clearance is an essential defense mechanism against bacteria and particulate matter. Mucociliary dysfunction is an important feature of obstructive lung diseases such as chronic obstructive pulmonary disease, asthma, cystic fibrosis, and bronchiectasis. ⋯ The involvement of the cholinergic and adrenergic neural pathways in the pathophysiology of mucus hypersecretion suggests the potential therapeutic role of bronchodilators as mucoactive agents. Although anticholinergics and adrenergic agonist bronchodilators have been routinely used, alone or in combination, to enhance mucociliary clearance in patients with obstructive lung disease, the existing evidence does not consistently show clinical effectiveness.
-
Chest physical therapy (CPT) is a widely used intervention for patients with airway diseases. The main goal is to facilitate secretion transport and thereby decrease secretion retention in the airways. Historically, conventional CPT has consisted of a combination of forced expirations (directed cough or huff), postural drainage, percussion, and/or shaking. ⋯ Alternative airway clearance modalities (eg, high-frequency chest wall compression, vibratory positive expiratory pressure, and exercise) are not proven to be more effective than conventional CPT and usually add little benefit to conventional CPT. Only if cough and huff are insufficiently effective should other CPT modalities be considered. The choice between the CPT alternatives mainly depends on patient preference and the individual patient's response to treatment.
-
Airway mucus hypersecretion is a feature of a number of severe respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF). However, each disease has a different airway inflammatory response, with consequent, and presumably linked, mucus hypersecretory phenotype. Thus, it is possible that optimal treatment of the mucus hypersecretory element of each disease should be disease-specific. ⋯ It is also noteworthy that the mucus factors that favor mucociliary transport (eg, thin mucus gel layer, "ideal" sol depth, and elasticity greater than viscosity) are opposite to those that favor cough effectiveness (thick mucus layer, excessive sol height, and viscosity greater than elasticity), which indicates that different mucoactive drugs would be required for treatment of mucus obstruction in proximal versus distal airways, or in patients with an impaired cough reflex. With the exception of mucoregulatory agents, whose primary action is unlikely to be directed against mucus, well-designed clinical trials are required to unequivocally determine the effectiveness, or otherwise, of expectorant, mucolytic, and mucokinetic agents in airway diseases in which mucus hypersecretion is a pathophysiological and clinical issue. It is noteworthy that, of the more complex molecules in development, it is simple inhaled hypertonic saline that is currently receiving the greatest attention as a mucus therapy, primarily in CF.
-
Mucus secretion is the first-line defense against the barrage of irritants that inhalation of approximately 500 L of air an hour brings into the lungs. The inhaled soot, dust, microbes, and gases can all damage the airway epithelium. Consequently, mucus secretion is extremely rapid, occurring in tens of milliseconds. ⋯ When given longer-term, many of these same mediators also increase mucin gene expression and mucin synthesis, and induce goblet cell hyperplasia. These responses induce (in contrast to the protective effects of acute secretion) long-term, chronic hypersecretion of airway mucus, which contributes to respiratory disease. In this case the homeostatic, protective function of airway mucus secretion is lost, and, instead, mucus hypersecretion contributes to pathophysiology of a number of severe respiratory conditions, including asthma, chronic obstructive pulmonary disease, and cystic fibrosis.