Viruses Basel
-
To date, there is no severe acute respiratory syndrome coronavirus 2-(SARS-CoV-2)-specific prognostic biomarker available. We assessed whether SARS-CoV-2 cycle threshold (Ct) value at diagnosis could predict novel CoronaVirus Disease 2019 (COVID-19) severity, clinical manifestations, and six-month sequelae. Hospitalized and outpatient cases were randomly sampled from the diagnoses of March 2020 and data collected at 6 months by interview and from the regional database for COVID-19 emergency. ⋯ Lethality, disease severity, type, and number of signs and symptoms, as well as six-month sequelae distributed inversely among the groups with respect to SARS-CoV-2 Ct. After controlling for confounding, SARS-CoV-2 Ct at diagnosis was still associated with COVID-19-related death (p = 0.023), disease severity (p = 0.023), number of signs and symptoms (p < 0.01), and presence of six-month sequelae (p < 0.01). Early quantification of SARS-CoV-2 may be a useful predictive marker to inform differential strategies of clinical management and resource allocation.
-
Monitoring acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genetic diversity and emerging mutations in this ongoing pandemic is crucial for understanding its evolution and assuring the performance of diagnostic tests, vaccines, and therapies against coronavirus disease (COVID-19). This study reports on the amino acid (aa) conservation degree and the global and regional temporal evolution by epidemiological week for each residue of the following four structural SARS-CoV-2 proteins: spike, envelope, membrane, and nucleocapsid. All, 105,276 worldwide SARS-CoV-2 complete and partial sequences from 117 countries available in the Global Initiative on Sharing All Influenza Data (GISAID) from 29 December 2019 to 12 September 2020 were downloaded and processed using an in-house bioinformatics tool. ⋯ Mutations evolution differed across geographic regions and epidemiological weeks (epiweeks). The most prevalent aa changes were D614G (81.5%) in the spike protein, followed by the R203K and G204R combination (37%) in the nucleocapsid protein. The presented data provide insight into the genetic variability of SARS-CoV-2 structural proteins during the pandemic and highlights local and worldwide emerging aa changes of interest for further SARS-CoV-2 structural and functional analysis.
-
Three major outbreaks of the coronavirus, a zoonotic virus known to cause respiratory disease, have been reported since 2002, including SARS-CoV, MERS-CoV and the most recent 2019-nCoV, or more recently known as SARS-CoV-2. Bats are known to be the primary animal reservoir for coronaviruses. However, in the past few decades, the virus has been able to mutate and adapt to infect humans, resulting in an animal-to-human species barrier jump. ⋯ The novel virus is rapidly spreading across China and has been transmitted to 213 other countries/territories across the globe. Researchers have reported that the virus is constantly evolving and spreading through asymptomatic carriers, further suggesting a high global health threat. To this end, current up-to-date information on the coronavirus evolution and SARS-CoV-2 modes of transmission, detection techniques and current control and prevention strategies are summarized in this review.
-
Since the emergence of COVID-19, many publications have reported associations with ABO blood types. Despite between-study discrepancies, an overall consensus has emerged whereby blood group O appears associated with a lower risk of COVID-19, while non-O blood types appear detrimental. Two major hypotheses may explain these findings: First, natural anti-A and anti-B antibodies could be partially protective against SARS-CoV-2 virions carrying blood group antigens originating from non-O individuals. ⋯ Moreover, as frequencies of ABO phenotypes are highly variable between populations or geographical areas, the ABO coefficient of variation, rather than the frequency of each individual phenotype is expected to determine impact of the ABO system on virus transmission. Accordingly, the ABO coefficient of variation correlates with COVID-19 prevalence. Overall, despite modest apparent risk differences between ABO subtypes, the ABO blood group system might play a major role in the COVID-19 pandemic when considered at the population level.
-
Around two percent of asymptomatic women in labor test positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Spain. Families and care providers face childbirth with uncertainty. We determined if SARS-CoV-2 infection at delivery among asymptomatic mothers had different obstetric outcomes compared to negative patients. ⋯ No differences were observed between both groups in key maternal and neonatal outcomes at delivery and follow-up, with the exception of prelabor rupture of membranes at term (adjusted odds ratio 1.88, 95% confidence interval 1.13-3.11; p = 0.015). Asymptomatic SARS-CoV-2 positive mothers have higher odds of prelabor rupture of membranes at term, without an increase in perinatal complications, compared to negative mothers. Pregnant women testing positive for SARS-CoV-2 at admission for delivery should be reassured by their healthcare workers in the absence of symptoms.