Viruses Basel
-
The Coronavirus Disease 2019 (COVID-19), caused by SARS-CoV-2, continues to spread globally with significantly high morbidity and mortality rates. Antigen-specific responses are of unquestionable value for clinical management of COVID-19 patients. Here, we investigated the kinetics of IgM, IgG against the spike (S) and nucleoproteins (N) proteins and their neutralizing capabilities in hospitalized COVID-19 patients with different disease presentations (i.e., mild, moderate or severe), need for intensive care units (ICU) admission or outcomes (i.e., survival vs death). ⋯ Interestingly, significantly higher levels of nAbs as well as anti-S1 and -N IgG and IgM antibodies were found in patients with more severe symptoms, patients requiring admission to ICU or those with fatal outcomes. More importantly, early after symptoms onset, we found that the levels of anti-N antibodies correlated strongly with disease severity. Collectively, these findings provide new insights into the kinetics of antibody responses in COVID-19 patients with different disease severity.
-
Previously, our group predicted commercially available Food and Drug Administration (FDA) approved drugs that can inhibit each step of the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using a deep learning-based drug-target interaction model called Molecule Transformer-Drug Target Interaction (MT-DTI). Unfortunately, additional clinically significant treatment options since the approval of remdesivir are scarce. To overcome the current coronavirus disease 2019 (COVID-19) more efficiently, a treatment strategy that controls not only SARS-CoV-2 replication but also the host entry step should be considered. ⋯ Furthermore, three of the top 30 drugs with strong affinity prediction for the TMPRSS2 are anti-hepatitis C virus (HCV) drugs, including ombitasvir, daclatasvir, and paritaprevir. Notably, of the top 30 drugs, AT1R blocker eprosartan and neuropsychiatric drug lisuride showed similar gene expression profiles to potential TMPRSS2 inhibitors. Collectively, we suggest that drugs predicted to have strong inhibitory potencies to ACE2 and TMPRSS2 through the DTI model should be considered as potential drug repurposing candidates for COVID-19.
-
Multicenter Study Comparative Study
Detection of SARS-CoV-2 from Saliva as Compared to Nasopharyngeal Swabs in Outpatients.
Widely available and easily accessible testing for COVID-19 is a cornerstone of pandemic containment strategies. Nasopharyngeal swabs (NPS) are the currently accepted standard for sample collection but are limited by their need for collection devices and sampling by trained healthcare professionals. The aim of this study was to compare the performance of saliva to NPS in an outpatient setting. ⋯ This study demonstrates that saliva performs comparably to NPS for the detection of SARS-CoV-2. Saliva was simple to collect, did not require transport media, and could be tested with equipment readily available at most laboratories. The use of saliva as an acceptable alternative to NPS could support the use of widespread surveillance testing for SARS-CoV-2.
-
The mechanism(s) by which neonates testing positive for coronavirus disease 2019 (COVID-19) acquire their infection has been largely unknown. Transmission of the etiological agent, SARS-CoV-2, from mother to infant has been suspected but has been difficult to confirm. This communication summarizes the spectrum of pathology findings from pregnant women with COVID-19 based upon the infection status of their infants and addresses the potential interpretation of these results in terms of the effects of SARS-CoV-2 on the placenta and the pathophysiology of maternal-fetal infection. ⋯ In contrast, placentas from infected maternal-neonatal dyads are characterized by the finding of mononuclear cell inflammation of the intervillous space, termed chronic histiocytic intervillositis, together with syncytiotrophoblast necrosis. These placentas show prominent positivity of syncytiotrophoblast by SARS-CoV-2, fulfilling the published criteria for transplacental viral transmission as confirmed in fetal cells through identification of viral antigens by immunohistochemistry or viral nucleic acid using RNA in situ hybridization. The co-occurrence of chronic histiocytic intervillositis and trophoblast necrosis appears to be a risk factor for placental infection with SARS-CoV-2 as well as for maternal-fetal viral transmission, and suggests a potential mechanism by which the coronavirus can breach the maternal-fetal interface.
-
COVID-19 pathophysiology and the predictive factors involved are not fully understood, but lymphocytes dysregulation appears to play a role. This paper aims to evaluate lymphocyte subsets in the pathophysiology of COVID-19 and as predictive factors for severe disease. ⋯ A predictive value and treatment considerations for lymphocyte subsets are suggested, especially for CD3CD4+ T cells. Lymphocyte subsets determination at hospital admission is recommended.