Bmc Med
-
Randomized Controlled Trial
Evaluation of a multiple ecological level child obesity prevention program: Switch what you Do, View, and Chew.
Schools are the most frequent target for intervention programs aimed at preventing child obesity; however, the overall effectiveness of these programs has been limited. It has therefore been recommended that interventions target multiple ecological levels (community, family, school and individual) to have greater success in changing risk behaviors for obesity. This study examined the immediate and short-term, sustained effects of the Switch program, which targeted three behaviors (decreasing children's screen time, increasing fruit and vegetable consumption, and increasing physical activity) at three ecological levels (the family, school, and community). ⋯ The results indicate that the Switch program yielded small-to-modest treatment effects for promoting children's fruit and vegetable consumption and minimizing screen time. The Switch program offers promise for use in youth obesity prevention.
-
Recent findings have highlighted roles played by innate cellular factors in restricting intracellular viral replication. In this review, we discuss in brief the activities of apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G), bone marrow stromal cell antigen 2 (BST-2), cyclophilin A, tripartite motif protein 5 alpha (Trim5alpha), and cellular microRNAs as examples of host restriction factors that target HIV-1. We point to countermeasures encoded by HIV-1 for moderating the potency of these cellular restriction functions.
-
On 11 June the World Health Organization officially raised the phase of pandemic alert (with regard to the new H1N1 influenza strain) to level 6. As of 19 July, 137,232 cases of the H1N1 influenza strain have been officially confirmed in 142 different countries, and the pandemic unfolding in the Southern hemisphere is now under scrutiny to gain insights about the next winter wave in the Northern hemisphere. A major challenge is pre-emptied by the need to estimate the transmission potential of the virus and to assess its dependence on seasonality aspects in order to be able to use numerical models capable of projecting the spatiotemporal pattern of the pandemic. ⋯ The analysis shows the potential for an early epidemic peak occurring in October/November in the Northern hemisphere, likely before large-scale vaccination campaigns could be carried out. The baseline results refer to a worst-case scenario in which additional mitigation policies are not considered. We suggest that the planning of additional mitigation policies such as systematic antiviral treatments might be the key to delay the activity peak in order to restore the effectiveness of the vaccination programs.
-
A novel variant of influenza A (H1N1) is causing a pandemic and, although the illness is usually mild, there are concerns that its virulence could change through reassortment with other influenza viruses. This is of greater concern in parts of Southeast Asia, where the population density is high, influenza is less seasonal, human-animal contact is common and avian influenza is still endemic. ⋯ It is likely that, in the absence of effective interventions, the introduction of a novel H1N1 into a densely populated country such as Vietnam will result in a widespread epidemic. A large epidemic in a country with intense human-animal interaction and continued co-circulation of other seasonal and avian viruses would provide substantial opportunities for H1N1 to acquire new genes.