Respiratory care
-
Negative-pressure ventilation (NPV) is a form of noninvasive ventilation that has been recently utilized in pediatric acute respiratory failure. Negative-pressure ventilators apply negative pressure onto the chest wall via a cuirass to recruit areas of atelectasis. Continuous negative extrathoracic pressure, the most common mode, is similar to CPAP, where negative pressure is maintained at a constant level throughout the respiratory cycle while patients initiate their own breaths and continue to breathe spontaneously throughout. ⋯ Supplemental oxygen is provided through a nasal cannula or face mask due of the lack of NPV devices' interface with the mouth or nose. NPV can improve preload to the heart and cardiac output (CO) in patients with restrictive right-ventricular physiology requiring CO augmentation and those with Fontan physiology. The purpose of this article is to review the physiological principles of spontaneous and NPV, examine the evidence supporting the use of NPV, give practical and meaningful guidance on its clinical application in the pediatric ICU, and summarize areas for future studies on its uses.
-
The rising prevalence of electronic cigarette (e-cigarette) and hookah use among youth raises questions about medical trainees' views of these products. We aimed to investigate medical trainees' knowledge and attitudes toward e-cigarette and hookah use. ⋯ Medical trainees often reported incorrect or biased perceptions of e-cigarettes and hookah, resorted to unreliable sources of information, and lacked the confidence to discuss the topic with patients. An expanded curriculum emphasis on e-cigarette and hookah use might be necessary because failing to address these educational gaps could risk years of efforts against smoking normalization.
-
The performance of high-frequency oscillatory ventilators (HFOV) differs by the waveform generation mode and circuit characteristics. Few studies have described the performance of piston-type HFOV. The present study aimed to compare the amplitude required to reach the target high-frequency tidal volume ([Formula: see text]); determine the relationship between the settings and actual pressure in amplitude or mean airway pressure ([Formula: see text]); and describe the interaction among compliance, frequency, and endotracheal tube (ETT) inner diameter in 4 HFOV models, including Humming X, Vue (a piston type ventilator commonly used in Japan), VN500 (a diaphragm type), and SLE5000 (a reverse jet type). ⋯ The actual measured value, such as alveolar [Formula: see text] and high-frequency [Formula: see text], varied according to the type of HFOV system and the inner diameter of the ETT, even with identical settings. Clinicians should therefore determine the setting appropriate to each HFOV model.