Frontiers in neurology
-
Frontiers in neurology · Jan 2020
ReviewImpact of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in the Nervous System: Implications of COVID-19 in Neurodegeneration.
Coronavirus Disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome coronavirus-2 (SARS-CoV-2), began in December 2019, in Wuhan, China and was promptly declared as a pandemic by the World Health Organization (WHO). As an acute respiratory disease, COVID-19 uses the angiotensin-converting enzyme 2 (ACE2) receptor, which is the same receptor used by its predecessor, SARS-CoV, to enter and spread through the respiratory tract. ⋯ Although there is evidence showing that coronaviruses can invade the central nervous system (CNS), studies are needed to address the invasion of SARS-CoV-2 in the CNS and to decipher the underlying neurotropic mechanisms used by SARS-CoV-2. This review summarizes current reports on the neurological manifestations of COVID-19 and addresses potential routes used by SARS-CoV-2 to invade the CNS.
-
Frontiers in neurology · Jan 2020
ReviewMachine Learning Applications in the Neuro ICU: A Solution to Big Data Mayhem?
The neurological ICU (neuro ICU) often suffers from significant limitations due to scarce resource availability for their neurocritical care patients. Neuro ICU patients require frequent neurological evaluations, continuous monitoring of various physiological parameters, frequent imaging, and routine lab testing. This amasses large amounts of data specific to each patient. ⋯ Machine Learning algorithms (ML), are uniquely capable of interpreting high-dimensional datasets that are too difficult for humans to comprehend. Therefore, the application of ML in the neuro ICU could alleviate the burden of analyzing big datasets for each patient. This review serves to (1) briefly summarize ML and compare the different types of MLs, (2) review recent ML applications to improve neuro ICU management and (3) describe the future implications of ML to neuro ICU management.
-
Frontiers in neurology · Jan 2020
ReviewNeuromuscular Complications With SARS-COV-2 Infection: A Review.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cases were first reported in Wuhan, Hubei province of China in December, 2019. SARS- COV-2 primarily affects the cardio-respiratory system. Over the last few months, several studies have described various neurological sequelae of SARS-COV-2 infection. ⋯ Mean time for onset of neurological symptoms from initial symptoms in 11 patients was 8.18 days, with SD of 2.86 days. Mean time to performing electrodiagnostic study from onset of neurological symptom was 6 days with standard deviation of 3.25. Six patients had demyelinating pattern, three had acute sensory motor axonal neuropathy, and one had acute motor axonal neuropathy on electrodiagnostic studies.
-
SARS-CoV-2 is a highly pathogenic coronavirus that has caused an ongoing worldwide pandemic. Emerging in Wuhan, China in December 2019, the virus has spread rapidly around the world. Corona virus disease 2019 (COVID-19), which is caused by SARS-CoV-2, has resulted in significant morbidity and mortality. ⋯ This includes headache, anosmia, meningoencephalitis, acute ischemic stroke, and several presumably post/para-infectious syndromes and altered mental status not explained by respiratory etiologies. Interestingly, previous studies in animal models emphasized the neurotropism of coronaviruses; thus, these CNS manifestations of COVID-19 are not surprising. This minireview scans the literature regarding the involvement of the CNS in coronavirus infections in general, and in regard to the recent SARS-CoV-2, specifically.
-
Frontiers in neurology · Jan 2020
Neurological Complications and Noninvasive Multimodal Neuromonitoring in Critically Ill Mechanically Ventilated COVID-19 Patients.
Purpose: The incidence and the clinical presentation of neurological manifestations of coronavirus disease-2019 (COVID-19) remain unclear. No data regarding the use of neuromonitoring tools in this group of patients are available. Methods: This is a retrospective study of prospectively collected data. ⋯ Patients with increased intracranial pressure measured by ONSD (19% of the overall population) had longer ICU stay. Conclusions: Neurological complications are common in critically ill patients with COVID-19 receiving invasive mechanical ventilation and are associated with prolonged ICU length of stay. Multimodal noninvasive neuromonitoring systems are useful tools for the early detection of variations in cerebrovascular parameters in COVID-19.