Frontiers in neurology
-
Frontiers in neurology · Jan 2015
Training in Compensatory Strategies Enhances Rapport in Interactions Involving People with Möbius Syndrome.
In the exploratory study reported here, we tested the efficacy of an intervention designed to train teenagers with Möbius syndrome (MS) to increase the use of alternative communication strategies (e.g., gestures) to compensate for their lack of facial expressivity. Specifically, we expected the intervention to increase the level of rapport experienced in social interactions by our participants. In addition, we aimed to identify the mechanisms responsible for any such increase in rapport. ⋯ Observer-coded gesture and expressivity increased in participants with and without MS, whereas overall linguistic alignment decreased. Fidgeting and repetitiveness of verbal behavior also decreased in both groups. In sum, the intervention may impact non-verbal and verbal behavior in participants with and without MS, increasing rapport as well as overall gesturing, while decreasing alignment.
-
Frontiers in neurology · Jan 2015
Acoustic CR Neuromodulation Therapy for Subjective Tonal Tinnitus: A Review of Clinical Outcomes in an Independent Audiology Practice Setting.
To describe the quantitative treatment outcomes of patients undergoing acoustic coordinated reset (CR) neuromodulation at a single independent audiology practice over a 22- to 26-week period as part of an open label, non-randomized, non-controlled observational study. ⋯ Acoustic CR neuromodulation therapy appears to be a practical and promising treatment for subjective tonal tinnitus. However, due to the lack of a control group it is difficult to reach an absolute conclusion regarding to what extent the observed effects are related directly to the acoustic CR neuromodulation therapy. Also, as the observed patient group was made up of paying clients it is unknown as to whether this could have caused any additional placebo like effects to influence the final results.
-
Frontiers in neurology · Jan 2015
High-Frequency Repetitive Sensory Stimulation as Intervention to Improve Sensory Loss in Patients with Complex Regional Pain Syndrome I.
Achieving perceptual gains in healthy individuals or facilitating rehabilitation in patients is generally considered to require intense training to engage neuronal plasticity mechanisms. Recent work, however, suggested that beneficial outcome similar to training can be effectively acquired by a complementary approach in which the learning occurs in response to mere exposure to repetitive sensory stimulation (rSS). For example, high-frequency repetitive sensory stimulation (HF-rSS) enhances tactile performance and induces cortical reorganization in healthy subjects and patients after stroke. ⋯ In contrast, after LF-rSS, tactile discrimination was impaired in all four patients, while detection thresholds and pain were not affected. Our data suggest that HF-rSS could be used as a novel approach in CRPS treatment to improve sensory loss. Longer treatment periods might be required to induce consistent pain relief.
-
Frontiers in neurology · Jan 2015
Effects of blast overpressure on neurons and glial cells in rat organotypic hippocampal slice cultures.
Due to recent involvement in military conflicts, and an increase in the use of explosives, there has been an escalation in the incidence of blast-induced traumatic brain injury (bTBI) among US military personnel. Having a better understanding of the cellular and molecular cascade of events in bTBI is prerequisite for the development of an effective therapy that currently is unavailable. The present study utilized organotypic hippocampal slice cultures (OHCs) exposed to blast overpressures of 150 kPa (low) and 280 kPa (high) as an in vitro bTBI model. ⋯ Labeling OHCs with PI, neuronal, and glial markers revealed that the blast-evoked extensive neuronal death and to a lesser extent loss of glial cells. Furthermore, our data demonstrated activation of astrocytes and microglial cells in low- and high-blasted OHCs, which reached a statistically significant difference in the high-blast group. These data confirmed that our in vitro bTBI model is a useful tool for studying cellular and molecular changes after blast exposure.
-
Frontiers in neurology · Jan 2015
A Prospective Pilot Trial for Pallidal Deep Brain Stimulation in Huntington's Disease.
Movement disorders in Huntington's disease are often medically refractive. The aim of the trial was assessment of procedure safety of deep brain stimulation, equality of internal- and external-pallidal stimulation and efficacy followed-up for 6 months in a prospective pilot trial. ⋯ Pallidal deep brain stimulation was demonstrated to be a safe treatment option for the reduction of chorea in Huntington's disease. Their effects on chorea and dystonia and on quality-of-life should be examined in larger controlled trials.