Frontiers in physiology
-
Lung diseases constitute a global health concern causing disability. According to WHO in 2016, respiratory diseases accounted for 24% of world population mortality, the second cause of death after cardiovascular diseases. The Kv7 channels family is a group of voltage-dependent K+ channels (Kv) encoded by KCNQ genes that are involved in various physiological functions in numerous cell types, especially, cardiac myocytes, smooth muscle cells, neurons, and epithelial cells. ⋯ Kv7 channels are now recognized as playing relevant physiological roles in many tissues, which have encouraged the search for Kv7 channel modulators with potential therapeutic use in many diseases including those affecting the lung. Modulation of Kv7 channels has been proposed to provide beneficial effects in a number of lung conditions. Therefore, Kv7 channel openers/enhancers or drugs acting partly through these channels have been proposed as bronchodilators, expectorants, antitussives, chemotherapeutics and pulmonary vasodilators.
-
Frontiers in physiology · Jan 2020
Supervised Machine Learning Applied to Automate Flash and Prolonged Capillary Refill Detection by Pulse Oximetry.
Develop an automated approach to detect flash (<1.0 s) or prolonged (>2.0 s) capillary refill time (CRT) that correlates with clinician judgment by applying several supervised machine learning (ML) techniques to pulse oximeter plethysmography data. ⋯ Supervised machine learning applied to pulse oximeter waveform features predicts flash or prolonged capillary refill.
-
Frontiers in physiology · Jan 2020
Antinociceptive Effects of Lipid Raft Disruptors, a Novel Carboxamido-Steroid and Methyl β-Cyclodextrin, in Mice by Inhibiting Transient Receptor Potential Vanilloid 1 and Ankyrin 1 Channel Activation.
Transient Receptor Potential Vanilloid 1 and Ankyrin 1 (TRPV1, TRPA1) cation channels are expressed in nociceptive primary sensory neurons, and play an integrative role in pain processing and inflammatory functions. Lipid rafts are liquid-ordered plasma membrane microdomains rich in cholesterol, sphingomyelin, and gangliosides. We earlier proved that lipid raft disintegration by cholesterol depletion using a novel carboxamido-steroid compound (C1) and methyl β-cyclodextrin (MCD) significantly and concentration-dependently inhibit TRPV1 and TRPA1 activation in primary sensory neurons and receptor-expressing cell lines. ⋯ Both C1 and MCD had inhibitory action on TRPA1 activation (formalin)-induced acute nocifensive reactions (paw liftings, lickings, holdings, and shakings) in the second, neurogenic inflammatory phase by 36% and 51%, respectively. These are the first in vivo data showing that our novel lipid raft disruptor carboxamido-steroid compound exerts antinociceptive and antihyperalgesic effects by inhibiting TRPV1 and TRPA1 ion channel activation similarly to MCD, but in 150-fold lower concentrations. It is concluded that C1 is a useful experimental tool to investigate the effects of cholesterol depletion in animal models, and it also might open novel analgesic drug developmental perspectives.
-
Frontiers in physiology · Jan 2020
Influence of Positive End-Expiratory Pressure Titration on the Effects of Pronation in Acute Respiratory Distress Syndrome: A Comprehensive Experimental Study.
Prone position can reduce mortality in acute respiratory distress syndrome (ARDS), but several studies found variable effects on oxygenation and lung mechanics. It is unclear whether different positive end-expiratory pressure (PEEP) titration techniques modify the effect of prone position. We tested, in an animal model of ARDS, if the PEEP titration method may influence the effect of prone position on oxygenation and lung protection. ⋯ Pronation homogenized lung regional strain and ventilation and redistributed the ventilation/perfusion ratio along the sternal-to-vertebral gradient. The PEEP titration technique influences the oxygenation response to prone position. However, the lung-protective effects of prone position could be independent of the PEEP titration strategy.
-
Frontiers in physiology · Jan 2020
Enhanced Autophagy in GAB1-Deficient Vascular Endothelial Cells Is Responsible for Atherosclerosis Progression.
Autophagy is a host machinery that controls cellular health. Dysfunction of autophagy is responsible for the pathogenesis of many human diseases that include atherosclerosis obliterans (ASO). Physiologically, host autophagy removes aging organelles and delays the formation of atherosclerotic plaque. ⋯ Moreover, we found that knockdown of GAB1 profoundly inhibited HUVEC proliferation, migration, and tube formation. Taken together, this study first suggests that GAB1 is a key regulator of autophagy in HUVECs. Targeting GAB1 may serve as a potential strategy for the atherosclerosis treatment.