The Journal of infectious diseases
-
The unique environment of the human stomach makes it difficult to establish representative in vitro models for Helicobacter pylori that mimic the natural infection. The in vitro explant culture (IVEC) technique is based on coculture of human gastric explants with H. pylori, where bacteria-host interaction is studied on the basis of interleukin (IL)-8 secretion of the explant tissue in response to infection. ⋯ Furthermore, IL-8 production by the explant tissue in response to H. pylori infection demonstrated that the explants were adequately responsive. The IVEC technique for studies of the interplay between H. pylori and the human gastric mucosa during conditions of experimental infections in vitro could add knowledge to our understanding of the complex bacteria-host cross-talk in vivo.
-
A lethal synergism exists between influenza virus and pneumococcus, which likely accounts for excess mortality from secondary bacterial pneumonia during influenza epidemics. Characterization of a mouse model of synergy revealed that influenza infection preceding pneumococcal challenge primed for pneumonia and led to 100% mortality. This effect was specific for viral infection preceding bacterial infection, because reversal of the order of administration led to protection from influenza and improved survival. ⋯ Groups of mice receiving CV-6209, a competitive antagonist of PAFr, had survival rates similar to those of control mice, and lung and blood bacterial titers increased during PAFr inhibition. These data suggest that PAFr-independent pathways are operative in the model, prompting further study of receptor interactions during pneumonia and bacteremia. The model of lethal synergism will be a useful tool for exploring this and other mechanisms underlying viral-bacterial interactions.