The Journal of infectious diseases
-
Between the months of April and June 2004, an Ebola hemorrhagic fever (EHF) outbreak was reported in Yambio county, southern Sudan. Blood samples were collected from a total of 36 patients with suspected EHF and were tested by enzyme-linked immunosorbent assay (ELISA) for immunoglobulin G and M antibodies, antigen ELISA, and reverse-transcription polymerase chain reaction (PCR) of a segment of the Ebolavirus (EBOV) polymerase gene. A total of 13 patients were confirmed to be infected with EBOV. ⋯ Genetic analysis of PCR-positive samples indicated that the virus was similar to but distinct from Sudan EBOV Maleo 1979. In response, case management, social mobilization, and follow-up of contacts were set up as means of surveillance. The outbreak was declared to be over on 7 August 2004.
-
Currently, there are no licensed vaccines or therapeutics for the prevention or treatment of infection by the highly lethal filoviruses, Ebola virus (EBOV) and Marburg virus (MARV), in humans. We previously had demonstrated the protective efficacy of virus-like particle (VLP)-based vaccines against EBOV and MARV infection in rodents. ⋯ On the basis of safety and efficacy, eVLPs represent a promising filovirus vaccine for use in humans.
-
In spite of antibiotic treatment, pneumococcal meningitis continues to be associated with significant morbidity and mortality. The complement system is a key component of innate immunity against invading pathogens. However, activation of complement is also involved in tissue damage, and complement inhibition by C1 inhibitor (C1-inh) is beneficial in animal models of endotoxemia and sepsis. ⋯ C1-inh treatment was associated with reduced clinical illness, a less-pronounced inflammatory infiltrate around the meninges, and lower brain levels of proinflammatory cytokines and chemokines. C1-inh treatment increased bacterial clearance, possibly through an up-regulation of CR3. Hence, C1-inh may be a useful agent in the treatment of pneumococcal meningitis.
-
We investigated CD4(+) memory T cell responses to influenza virus (FLU), respiratory syncytial virus (RSV), and nontypeable Haemophilus influenzae (NTHi). ⋯ No gross defects were found in circulating CD4(+) memory cells specific for pathogens associated with COPD. However, the large differentiated CD4(+) memory T cell pool residing in the lung may contribute to a large extent to local antiviral immunological protection.