Frontiers in psychiatry
-
Frontiers in psychiatry · Jan 2012
Transcutaneous vagus nerve stimulation: retrospective assessment of cardiac safety in a pilot study.
Vagus nerve stimulation has been successfully used as a treatment strategy for epilepsy and affective disorders for years. Transcutaneous vagus nerve stimulation (tVNS) is a new non-invasive method to stimulate the vagus nerve, which has been shown to modulate neuronal activity in distinct brain areas. ⋯ To our knowledge this is one of the first studies investigating feasibility and safety of tVNS in a clinical sample. In those subjects with no known pre-existing cardiac pathology, preliminary data do not indicate arrhythmic effects of tVNS.
-
Frontiers in psychiatry · Jan 2012
Relationship of sleep quality and health-related quality of life in adolescents according to self- and proxy ratings: a questionnaire survey.
Sleep disturbances are common in adolescents and adversely affect performance, social contact, and susceptibility to stress. We investigated the hypothesis of a relationship between sleep and health-related quality of life (HRQoL), and applied self- and proxy ratings. ⋯ Our findings support the positive relationship of sleep and HRQoL. Furthermore, parents significantly underestimate sleep disturbances and overestimate HRQoL in their children.
-
In the past 10 years renewed interest has centered on non-invasive transcutaneous weak direct currents applied over the scalp to modulate cortical excitability ("brain polarization" or transcranial direct current stimulation, tDCS). Extensive literature shows that tDCS induces marked changes in cortical excitability that outlast stimulation. Aiming at developing a new, non-invasive, approach to spinal cord neuromodulation we assessed the after-effects of thoracic transcutaneous spinal DC stimulation (tsDCS) on somatosensory potentials (SEPs) evoked in healthy subjects by posterior tibial nerve (PTN) stimulation. ⋯ Besides influencing the laser evoked potentials (LEPs), tsDCS increases pain tolerance in healthy subjects. Hence, though the underlying mechanisms remain speculative, tsDCS modulates activity in lemniscal, spinothalamic, and segmental motor systems. Here we review currently available experimental evidence that non-invasive spinal cord stimulation (SCS) influences spinal function in humans and argue that, by focally modulating spinal excitability, tsDCS could provide a novel therapeutic tool complementary to drugs and invasive SCS in managing various pathologic conditions, including pain.
-
Frontiers in psychiatry · Jan 2012
Immediate effects of tDCS on the μ-opioid system of a chronic pain patient.
We developed a unique protocol where transcranial direct current stimulation (tDCS) of the motor cortex is performed during positron emission tomography (PET) scan using a μ-opioid receptor (μOR) selective radiotracer, [(11)C]carfentanil. This is one of the most important central neuromechanisms associated with pain perception and regulation. We measured μOR non-displaceable binding potential (μOR BP(ND)) in a trigeminal neuropathic pain patient (TNP) without creating artifacts, or posing risks to the patient (e.g., monitoring of resistance). ⋯ Interestingly, the single active tDCS application considerably decreased μORBP(ND) levels in (sub)cortical pain-matrix structures compared to sham tDCS, especially in the posterior thalamus. Suggesting that the μ-opioidergic effects of a single tDCS session are subclinical at immediate level, and repetitive sessions are necessary to revert ingrained neuroplastic changes related to the chronic pain. To our knowledge, we provide data for the first time in vivo that there is possibly an instant increase of endogenous μ-opioid release during acute motor cortex neuromodulation with tDCS.