American journal of physiology. Regulatory, integrative and comparative physiology
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Sep 2002
Increased GABA(A) inhibition of the RVLM after hindlimb unloading in rats.
Attenuated baroreflex-mediated increases in renal sympathetic nerve activity (RSNA) in hindlimb unloaded (HU) rats apparently are due to changes within the central nervous system. We hypothesized that GABA(A) receptor-mediated inhibition of the rostral ventrolateral medulla (RVLM) is increased after hindlimb unloading. Responses to bilateral microinjection of the GABA(A) antagonist (-)-bicuculline methiodide (BIC) into the RVLM were examined before and during caudal ventrolateral medulla (CVLM) inhibition in Inactin-anesthetized control and HU rats. ⋯ These data indicate that GABA(A) receptor-mediated inhibition of RVLM neurons is augmented after hindlimb unloading. Effects of input from the CVLM were unaltered. Thus, after cardiovascular deconditioning in rodents, the attenuated increase in sympathetic nerve activity in response to hypotension is associated with greater GABA(A) receptor-mediated inhibition of RVLM neurons originating at least in part from sources other than the CVLM.
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Sep 2002
Adrenomedullin binding protein-1 modulates vascular responsiveness to adrenomedullin in late sepsis.
Adrenomedullin (AM), a potent vasodilatory peptide, plays an important role in initiating the hyperdynamic response during the early stage of sepsis. Moreover, the reduced vascular responsiveness to AM appears to be responsible for the transition from the early, hyperdynamic to the late, hypodynamic phase of sepsis. Although the novel specific AM binding protein-1 (AMBP-1) enhances AM-mediated action in a cultured cell line, it remains to be determined whether AMBP-1 plays any role in modulating vascular responsiveness to AM during sepsis. ⋯ Moreover, the aortic level of AMBP-1 decreased significantly at 20 h after CLP. In contrast, AM receptor gene expression was not altered under such conditions. These results, taken together, suggest that AMBP-1 plays an important role in modulating vascular responsiveness to AM, and the reduced AMBP-1 appears to be responsible for the vascular AM hyporesponsiveness observed during the hypodynamic phase of sepsis.