Current drug targets
-
Current drug targets · Jan 2015
ReviewTargets Involved in Cardioprotection by the Non-Anesthetic Noble Gas Helium.
Research data from the past decade indicate that noble gases like xenon and helium exert profound cardioprotection when applied before, during or after organ ischemia. Of all noble gases, especially helium, has gained interest in the past years because it does not have an anesthetic "side effect" like xenon, allowing application of this specific gas in numerous clinical ischemia/reperfusion situations. ⋯ Investigations in animals as well as in humans have proven that this noble gas is not completely inert and can induce several biological effects. Though the underlying molecular mechanisms of helium-induced cardiac protection are still not yet fully understood, recently different signaling pathways have been elucidated.
-
Current drug targets · Jan 2015
ReviewEndogenous Cardioprotective Agents: Role in Pre and Postconditioning.
Cardiovascular diseases (CVD) are the leading cause of death, chronic illness and disability in Western countries. The most common cause of CVD derives from the harmful effects of acute myocardial ischemia and subsequent reperfusion injury. Cardioprotection against acute ischemia/ reperfusion injury is made possible by the "conditioning protocols." Conditioning is obtained by applying a few periods of brief ischemia and reperfusion in the event of prolonged (index) ischemia that may cause myocardial infarction. ⋯ Enphasis is given to endogenous cardioprotective agents acting or not on surface receptors, including chromogranin A derivatives, ghrelin-associated peptides, growth factors and cytokines, and to microvesicles and exosomes. Moreover the cardioprotective effects of gasotransmitters nitric oxide, hydrogen sulphide and carbon monoxide are reviewed. The possible clinical translation of these knowledge for future successful therapies is briefly and critically discussed.
-
Cystic Fibrosis (CF) is a serious genetic condition caused by CF transmembrane conductance regulator (CFTR) mutation. CF patients have shortened lifespan due to airway obstruction, infection, and end-stage lung failure. ⋯ Gene therapy introduces correct CFTR gene into the affected airway epithelium leading to the functional expression of CFTR in CF patients. This review will sum up the current status in CF-cause targeting therapy.
-
Cystic fibrosis (CF) is the most common life shortening autosomal inherited disorder, affecting 1 in 2500 newborns in the Caucasian population. In CF the lung pathology is associated with dehydration of the airways epithelial surface which in part results from Na(+) hyperabsorption via the epithelial sodium channel (ENaC). The molecular mechanisms of this Na(+) hyperabsorption and its correlation with the underlying genetic defect in the cystic fibrosis transmembrane conductance regulator (CFTR) are not fully understood. ⋯ Positive benefits for the inhibition of the CF related Na(+) hyperabsorption offer technologies using small molecule inhibitors like ASOs or siRNA, which target translation and knockdown of ENaC, respectively. In this review we discuss possible CFTR/ENaC interactions in the context of CF, describe ENaC structure as well as some of the numerous attempts that were performed to prevent the Na(+) hyperabsorption in CF related lung disease. Thus, we give a short summary of e.g. amiloride therapy approaches and focus on inventive blocking efforts using ASOs and siRNA.