Journal of clinical medicine
-
Machine learning (ML) is a promising methodology for classification and prediction applications in healthcare. However, this method has not been practically established for clinical data. Hyperuricemia is a biomarker of various chronic diseases. We aimed to predict uric acid status from basic healthcare checkup test results using several ML algorithms and to evaluate the performance. ⋯ The ML model was superior to the CLR model for the prediction of hyperuricemia. Future studies are needed to determine the best-performing ML algorithms based on data set characteristics. We believe that this study will be informative for studies using ML tools in clinical research.