International journal of neural systems
-
Dynamically assessing the level of consciousness is still challenging during anesthesia. With the help of Electroencephalography (EEG), the human brain electric activity can be noninvasively measured at high temporal resolution. Several typical quasi-stable states are introduced to represent the oscillation of the global scalp electric field. ⋯ Combined with studies on the possible cortical sources of microstates, the findings reveal that non-canonical microstate F is highly associated with propofol-induced altered states of consciousness. The results may also support the inference that this distinct topography can be derived from canonical microstate C (anterior-posterior orientation). Finally, this study further develops pertinent methodology and extends possible applications of the EEG microstate during propofol-induced anesthesia.
-
Neurons are the fundamental units of the brain and nervous system. Developing a good modeling of human neurons is very important not only to neurobiology but also to computer science and many other fields. The McCulloch and Pitts neuron model is the most widely used neuron model, but has long been criticized as being oversimplified in view of properties of real neuron and the computations they perform. ⋯ The soma then sums the weighted products from all branches and produces the neuron's output signal. We show that the rich nonlinear dendritic response and the powerful nonlinear neural computational capability, as well as many known neurobiological phenomena of neurons and dendrites, may be understood and explained by the DNM. Furthermore, we show that the model is capable of learning and developing an internal structure, such as the location of synapses in the dendritic branch and the type of synapses, that is appropriate for a particular task - for example, the linearly nonseparable problem, a real-world benchmark problem - Glass classification and the directional selectivity problem.
-
Task-related reorganization of functional connectivity (FC) has been widely investigated. Under classic static FC analysis, brain networks under task and rest have been demonstrated a general similarity. However, brain activity and cognitive process are believed to be dynamic and adaptive. ⋯ However, the second FC principal state in REST with much shorter "dwell time" implied the transient functional relationship between DMN and MN during REST. In addition, a more frequent shifting between two principal FC states indicated that brain network dynamically maintained a "default mode" in the motor system during REST, whereas the presence of a single principal FC state and reduced FC variability implied a more temporally stable connectivity during HCO, validating the distinct temporal patterns between REST and HCO. Our results further demonstrated that dynamic FC analysis could offer unique insights in understanding how the brain reorganizes itself during rest and task states, and the ways in which the brain adaptively responds to the cognitive requirements of tasks.
-
We investigate whether an electroencephalography technique could be used for yes/no communication with auditory scanning. To be usable by the target group, i.e., minimally conscious individuals, such a brain-computer interface (BCI) has to be very simple and robust. This leads to the concept of a single-switch BCI (ssBCI). ⋯ In the 2nd session, MI was used to communicate yes/no answers to a series of questions in an auditory scanning mode. Two of the three participants of the 2nd session were able to reliably communicate their intent with 90% or above correct and 0% false responses. This work showed, for the 1st time, the use of a ssBCI based on passive and imagined movements for communication in auditory scanning mode.