Articles: traumatic-brain-injuries.
-
Randomized Controlled Trial
Health care impact of implementing a clinical pathway for acute care of pediatric concussion: a stepped wedge, cluster randomised trial.
To test the effects of actively implementing a clinical pathway for acute care of pediatric concussion on health care utilization and costs. ⋯ Implementation of a clinical pathway in the ED increased outpatient follow-up and reduced the time from physician initial assessment to disposition, without increasing physician costs. Implementation of a clinical pathway can align acute care of pediatric concussion more closely with existing clinical practice guidelines while making care more efficient.
-
Journal of neurotrauma · Jul 2023
ADAM17 aggravates the inflammatory response by modulating microglia polarization through the TGF-β1/Smad pathway following experimental traumatic brain injury.
Microglia-mediated neuroinflammatory responses play important roles in secondary neurological injury after traumatic brain injury (TBI). The TGF-β pathway participates in the regulation of M1/M2 phenotype transformation of microglia. TGF-β can activate the Smad pathway by binding to TGF-βRs, which is regulated by the cleavage function of A disintegrin and metalloproteinase 17 (ADAM17). ⋯ The neuroprotective effect of ADAM17 inhibition was related to a shift from the M1 microglial phenotype to the M2 microglial phenotype, thus reducing TBI-induced neuroinflammation. ADAM17 inhibition increased expression of TGF-βRs on the microglia membrane, promoted formation of TGF-β1/TGF-βRII complexes, and induced intranuclear translocation of Smads, which activated the TGF-β/Smad pathway. In conclusion, our study suggested that ADAM17 inhibition regulated microglia M1/M2 phenotype polarization through the TGF-β1/Smad pathway and influenced the neuroinflammatory response after TBI.
-
Intensive care medicine · Jul 2023
The effect of recombinant erythropoietin on long-term outcome after moderate-to-severe traumatic brain injury.
Recombinant erythropoietin (EPO) administered for traumatic brain injury (TBI) may increase short-term survival, but the long-term effect is unknown. ⋯ EPO neither decreased overall long-term mortality nor improved functional outcome in moderate or severe TBI patients treated in the intensive care unit (ICU). The limited sample size makes it difficult to make final conclusions about the use of EPO in TBI.
-
Journal of neurotrauma · Jul 2023
Mortality Prediction in Severe Traumatic Brain Injury Using Traditional and Machine Learning Algorithms.
Abstract Prognostic prediction of traumatic brain injury (TBI) in patients is crucial in clinical decision and health care policy making. This study aimed to develop and validate prediction models for in-hospital mortality after severe traumatic brain injury (sTBI). We developed and validated logistic regression (LR), LASSO regression, and machine learning (ML) algorithms including support vector machines (SVM) and XGBoost models. ⋯ All the prediction models can be accessed via a web-based calculator. Glasgow Coma Scale (GCS) score, age, pupillary light reflex, Injury Severity Score (ISS) for brain region, and the presence of acute subdural hematoma were the five strongest predictors for mortality prediction. The study showed that ML techniques such as XGBoost may capture information hidden in demographic and clinical predictors of patients with sTBI and yield more precise predictions compared with LR approaches.
-
Journal of neurotrauma · Jul 2023
Brain Targeted Xenon Protects Cerebral Vasculature After Traumatic Brain Injury.
Abstract Cerebrovascular dysfunction following traumatic brain injury (TBI) is a well-characterized phenomenon. Given the therapeutic potential of xenon, we aimed to study its effects after localized delivery to the brain using microbubbles. We designed xenon-containing microbubbles stabilized by dibehenoylphosphatidylcholine (DBPC) and polyethylene glycol (PEG) attached to saturated phospholipid (DPSE-PEG5000). ⋯ Endothelial cell culture experiments showed that glutamate reduces tight junction protein zona occludens-1 (ZO-1), but treatment with xenon microbubbles attenuates this effect. Xenon treatment protects cerebrovasculature and reduces astroglial reactivity after TBI. Further, these data support the future use of localized delivery of various therapeutic agents for brain injury using microbubbles in order to limit systemic side effects and reduce costs.