Articles: respiratory-distress-syndrome.
-
Acute respiratory failure relies on supportive care using non-invasive and invasive oxygen and ventilatory support. Pharmacologic therapies for the most severe form of respiratory failure, acute respiratory distress syndrome (ARDS), are limited. ⋯ Treatment requires prompt recognition of ARDS and an understanding of which patients may benefit most from specific pharmacologic interventions. The key to finding effective pharmacotherapies for ARDS may rely on deeper understanding of pathophysiology and bedside identification of ARDS subphenotypes.
-
Critical care clinics · Apr 2024
ReviewAcute Respiratory Distress Syndrome: Definition, Diagnosis, and Routine Management.
Acute respiratory distress syndrome (ARDS) is an acute inflammatory lung injury characterized by severe hypoxemic respiratory failure, bilateral opacities on chest imaging, and low lung compliance. ARDS is a heterogeneous syndrome that is the common end point of a wide variety of predisposing conditions, with complex pathophysiology and underlying mechanisms. Routine management of ARDS is centered on lung-protective ventilation strategies such as low tidal volume ventilation and targeting low airway pressures to avoid exacerbation of lung injury, as well as a conservative fluid management strategy.
-
Am. J. Respir. Crit. Care Med. · Apr 2024
Molecular Phenotypes of ARDS in the ROSE Trial have Differential Outcomes and Gene Expression Patterns That Differ at Baseline and Longitudinally Over Time.
Rationale: Two molecular phenotypes have been identified in acute respiratory distress syndrome (ARDS). In the ROSE (Reevaluation of Systemic Early Neuromuscular Blockade) trial of cisatracurium in moderate to severe ARDS, we addressed three unanswered questions: 1) Do the same phenotypes emerge in a more severe ARDS cohort with earlier recruitment; 2) Do phenotypes respond differently to neuromuscular blockade? and 3) What biological pathways most differentiate inflammatory phenotypes?Methods: We performed latent class analysis in ROSE using preenrollment clinical and protein biomarkers. In a subset of patients (n = 134), we sequenced whole-blood RNA using enrollment and Day 2 samples and performed differential gene expression and pathway analyses. ⋯ However, for the class-defining plasma proteins in the latent class analysis, no correlation was observed with their corresponding genes' expression. Conclusions: The hyperinflammatory and hypoinflammatory phenotypes have different clinical, protein, and dynamic transcriptional characteristics. These findings support the clinical and biological potential of molecular phenotypes to advance precision care in ARDS.
-
There is considerable interest in the potential for cell-based therapies, particularly mesenchymal stromal cells (MSCs) and their products, as a therapy for acute respiratory distress syndrome (ARDS). MSCs exert effects via diverse mechanisms including reducing excessive inflammation by modulating neutrophil, macrophage and T-cell function, decreasing pulmonary permeability and lung edema, and promoting tissue repair. ⋯ This perspective reassesses the therapeutic potential of MSC-based therapies for ARDS given insights from recent cell therapy trials in both COVID-19 and in 'classic' ARDS, and discusses studies in graft-vs.-host disease, one of the few licensed indications for MSC therapies. We identify important unknowns in the current literature, address challenges to clinical translation, and propose an approach to facilitate assessment of the therapeutic promise of MSC-based therapies for ARDS.
-
Semin Respir Crit Care Med · Apr 2024
Severe Community-Acquired Pneumonia: Noninvasive Mechanical Ventilation, Intubation, and HFNT.
Severe acute respiratory failure (ARF) is a major issue in patients with severe community-acquired pneumonia (CAP). Standard oxygen therapy is the first-line therapy for ARF in the less severe cases. However, respiratory supports may be delivered in more severe clinical condition. ⋯ A trial of NIV might be considered for select patients with hypoxemic ARF if there are no contraindications, with close monitoring by an experienced clinical team who can intubate patients promptly if they deteriorate. In such cases, individual clinician judgement is key to choose NIV, interface, and settings. Due to the paucity of studies addressing IMV in this population, the protective mechanical ventilation strategies recommended by guidelines for acute respiratory distress syndrome can be reasonably applied in patients with severe CAP.