• Experimental physiology · Aug 2018

    Membrane potential oscillations are not essential for spontaneous firing generation in L4 Aβ-afferent neurons after L5 spinal nerve axotomy and are not mediated by HCN channels.

    • L Djouhri, T Smith, M Alotaibi, and X Weng.
    • Department of Physiology, College of Medicine, Alfaisal University, PO Box 50927, Riyadh, 11533, Saudi Arabia.
    • Exp. Physiol. 2018 Aug 1; 103 (8): 1145-1156.

    New FindingsWhat is the central question of this study? Is spontaneous activity (SA) in L4 dorsal root ganglion (DRG) neurons induced by L5 spinal nerve axotomy associated with membrane potential oscillations in these neurons, and if so, are these membrane oscillations mediated by HCN channels? What is the main finding and its importance? Unlike injured L5 DRG neurons, which have been shown to be incapable of firing spontaneously without membrane potential oscillations, membrane potential oscillations are not essential for SA generation in conducting 'uninjured' L4 neurons, and they are not mediated by HCN channels. These findings suggest that the underlying cellular mechanisms of SA in injured and 'uninjured' DRG neurons induced by spinal nerve injury are distinct.AbstractThe underlying cellular and molecular mechanisms of peripheral neuropathic pain are not fully understood. However, preclinical studies using animal models suggest that this debilitating condition is driven partly by aberrant spontaneous activity (SA) in injured and uninjured dorsal root ganglion (DRG) neurons, and that SA in injured DRG neurons is triggered by subthreshold membrane potential oscillations (SMPOs). Here, using in vivo intracellular recording from control L4-DRG neurons, and ipsilateral L4-DRG neurons in female Wistar rats that had previously undergone L5 spinal nerve axotomy (SNA), we examined whether conducting 'uninjured' L4-DRG neurons in SNA rats exhibit SMPOs, and if so, whether such SMPOs are associated with SA in those L4 neurons, and whether they are mediated by hyperpolarization-activated cyclic nucleotide gated (HCN) channels. We found that 7 days after SNA: (a) none of the control A- or C-fibre DRG neurons showed SMPOs or SA, but 50%, 43% and 0% of spontaneously active cutaneous L4 Aβ-low threshold mechanoreceptors, Aβ-nociceptors and C-nociceptors exhibited SMPOs, respectively, in SNA rats with established neuropathic pain behaviors; (b) neither SMPOs nor SA in L4 Aβ-neurons was suppressed by blocking HCN channels with ZD7288 (10 mg kg-1 , i.v.); and (c) there is a tendency for female rats to show greater pain hypersensitivity than male rats. These results suggest that SMPOs are linked to SA only in some of the conducting L4 Aβ-neurons, that such oscillations are not a prerequisite for SA generation in those L4 A- or C-fibre neurons, and that HCN channels are not involved in their electrogenesis.© 2018 The Authors. Experimental Physiology © 2018 The Physiological Society.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.