• Clin Toxicol (Phila) · Jan 2016

    Review

    Sea-dumped chemical weapons: environmental risk, occupational hazard.

    • M I Greenberg, K J Sexton, and D Vearrier.
    • a Department of Emergency Medicine , Drexel University College of Medicine , Philadelphia , PA , USA.
    • Clin Toxicol (Phila). 2016 Jan 1; 54 (2): 79-91.

    IntroductionChemical weapons dumped into the ocean for disposal in the twentieth century pose a continuing environmental and human health risk.ObjectiveIn this review we discuss locations, quantity, and types of sea-dumped chemical weapons, related environmental concerns, and human encounters with sea-dumped chemical weapons.MethodsWe utilized the Ovid (http://ovidsp.tx.ovid.com) and PubMed (http://www.pubmed.org) search engines to perform MEDLINE searches for the terms 'sea-dumped chemical weapons', 'chemical warfare agents', and 'chemical munitions'. The searches returned 5863 articles. Irrelevant and non-English articles were excluded. A review of the references for these articles yielded additional relevant sources, with a total of 64 peer-reviewed articles cited in this paper. History and geography of chemical weapons dumping at sea: Hundreds of thousands of tons of chemical munitions were disposed off at sea following World War II. European, Russian, Japanese, and United States coasts are the areas most affected worldwide. Several areas in the Baltic and North Seas suffered concentrated large levels of dumping, and these appear to be the world's most studied chemical warfare agent marine dumping areas. Chemical warfare agents: Sulfur mustard, Lewisite, and the nerve agents appear to be the chemical warfare agents most frequently disposed off at sea. Multiple other type of agents including organoarsenicals, blood agents, choking agents, and lacrimators were dumped at sea, although in lesser volumes. Environmental concerns: Numerous geohydrologic variables contribute to the rate of release of chemical agents from their original casings, leading to difficult and inexact modeling of risk of release into seawater. Sulfur mustard and the organoarsenicals are the most environmentally persistent dumped chemical agents. Sulfur mustard in particular has a propensity to form a solid or semi-solid lump with a polymer coating of breakdown products, and can persist in this state on the ocean floor for decades. Rates of solubility and hydrolysis and levels of innate toxicity of a chemical agent are used to predict the risk to the marine environments. The organoarsenicals eventually breakdown into arsenic, and thus present an indefinite timeline for contamination. Generally, studies assaying sediment and water levels of parent chemical agents and breakdown products at dumpsites have found minimal amounts of relevant chemicals, although arsenic levels are typically higher in dumpsites than reference areas. Studies of marine organisms have not shown concerning amounts of chemical agents or breakdown products in tissue, but have shown evidence of chronic toxicity. There is believed to be minimal risk posed by seafood consumption. Microbiota assays of dumpsites are significantly altered in species composition compared to reference sites, which may imply unseen but significant changes to ecosystems of dumpsites. Human health concerns: The major human health risk at this time appears to arise from acute exposure to an agent by either accidental recovery of a chemical weapon on a fishing vessel, or by munitions washed ashore onto beaches.ConclusionsImproving technology continues to make the deep sea more accessible, thus increasing the risk of disturbing munitions lying on or buried in the seabed. Pipe laying, cable burying, drilling, scuba diving, trawling, and undersea scientific research are the activities posing the most risk. The long-term threat to the benthic habitat via increased arsenic concentrations, shifts in microbiota speciation, and chronic toxicity to vertebrates and invertebrates is not currently understood. The risk to the environment of massive release via disturbance remains a distinct possibility. Terrorist recovery and re-weaponization of chemical agents is a remote possibility.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…