• Systematic reviews · May 2021

    Text mining to support abstract screening for knowledge syntheses: a semi-automated workflow.

    • Ba' Pham, Jelena Jovanovic, Ebrahim Bagheri, Jesmin Antony, Huda Ashoor, Tam T Nguyen, Patricia Rios, Reid Robson, Sonia M Thomas, Jennifer Watt, Sharon E Straus, and Andrea C Tricco.
    • Knowledge Translation Program, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, 209 Victoria St, Toronto, Ontario, M5B 1T8, Canada.
    • Syst Rev. 2021 May 26; 10 (1): 156.

    BackgroundCurrent text mining tools supporting abstract screening in systematic reviews are not widely used, in part because they lack sensitivity and precision. We set out to develop an accessible, semi-automated "workflow" to conduct abstract screening for systematic reviews and other knowledge synthesis methods.MethodsWe adopt widely recommended text-mining and machine-learning methods to (1) process title-abstracts into numerical training data; and (2) train a classification model to predict eligible abstracts. The predicted abstracts are screened by human reviewers for ("true") eligibility, and the newly eligible abstracts are used to identify similar abstracts, using near-neighbor methods, which are also screened. These abstracts, as well as their eligibility results, are used to update the classification model, and the above steps are iterated until no new eligible abstracts are identified. The workflow was implemented in R and evaluated using a systematic review of insulin formulations for type-1 diabetes (14,314 abstracts) and a scoping review of knowledge-synthesis methods (17,200 abstracts). Workflow performance was evaluated against the recommended practice of screening abstracts by 2 reviewers, independently. Standard measures were examined: sensitivity (inclusion of all truly eligible abstracts), specificity (exclusion of all truly ineligible abstracts), precision (inclusion of all truly eligible abstracts among all abstracts screened as eligible), F1-score (harmonic average of sensitivity and precision), and accuracy (correctly predicted eligible or ineligible abstracts). Workload reduction was measured as the hours the workflow saved, given only a subset of abstracts needed human screening.ResultsWith respect to the systematic and scoping reviews respectively, the workflow attained 88%/89% sensitivity, 99%/99% specificity, 71%/72% precision, an F1-score of 79%/79%, 98%/97% accuracy, 63%/55% workload reduction, with 12%/11% fewer abstracts for full-text retrieval and screening, and 0%/1.5% missed studies in the completed reviews.ConclusionThe workflow was a sensitive, precise, and efficient alternative to the recommended practice of screening abstracts with 2 reviewers. All eligible studies were identified in the first case, while 6 studies (1.5%) were missed in the second that would likely not impact the review's conclusions. We have described the workflow in language accessible to reviewers with limited exposure to natural language processing and machine learning, and have made the code available to reviewers.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.