• Thorax · Nov 2009

    Hypercapnic acidosis attenuates pulmonary epithelial wound repair by an NF-kappaB dependent mechanism.

    • D O'Toole, P Hassett, M Contreras, B D Higgins, S T W McKeown, D F McAuley, T O'Brien, and J G Laffey.
    • Department of Anaesthesia, Clinical Sciences Institute, National University of Ireland, Galway, Ireland.
    • Thorax. 2009 Nov 1;64(11):976-82.

    BackgroundHypercapnic acidosis exerts protective effects in acute lung injury but may also slow cellular repair. These effects may be mediated via inhibition of nuclear factor-kappaB (NF-kappaB), a pivotal transcriptional regulator in inflammation and repair.ObjectivesTo determine the effects of hypercapnic acidosis in pulmonary epithelial wound repair, to elucidate the role of NF-kappaB and to examine the mechanisms by which these effects are mediated.MethodsConfluent small airway epithelial cell, human bronchial epithelial cell and type II alveolar A549 cell monolayers were subjected to wound injury under conditions of hypercapnic acidosis (pH 7.0, carbon dioxide tension (P(CO(2))) 11 kPa) or normocapnia (pH 7.37, P(CO(2)) 5.5 kPa) and the rate of healing determined. Subsequent experiments investigated the role of hypercapnia versus acidosis and elucidated the role of NF-kappaB and mitogen-activated protein kinases. The roles of cellular mitosis versus migration and of matrix metalloproteinases in mediating these effects were then determined.ResultsHypercapnic acidosis reduced wound closure (mean (SD) 33 (6.3)% vs 64 (5.9)%, p<0.01) and reduced activation of NF-kappaB compared with normocapnia. Buffering of the acidosis did not alter this inhibitory effect. Prior inhibition of NF-kappaB activation occluded the effect of hypercapnic acidosis. Inhibition of ERK, JNK and P38 did not modulate wound healing. Hypercapnic acidosis reduced epithelial cell migration but did not alter mitosis, and reduced matrix metalloproteinase-1 while increasing concentrations of tissue inhibitor of metalloproteinase-2.ConclusionsHypercapnic acidosis inhibits pulmonary epithelial wound healing by reducing cell migration via an NF-kappaB dependent mechanism that may involve alterations in matrix metalloproteinase activity.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.