• Mol. Cancer Ther. · Mar 2007

    Targeting BRAFV600E in thyroid carcinoma: therapeutic implications.

    • Constantine S Mitsiades, Joseph Negri, Ciaran McMullan, Douglas W McMillin, Elias Sozopoulos, Galinos Fanourakis, Gerassimos Voutsinas, Sophia Tseleni-Balafouta, Vassiliki Poulaki, David Batt, and Nicholas Mitsiades.
    • Department of Medical Oncology, Dana-Farber Cancer Institute, Mayer Building, Room M555, 44 Binney Street, Boston, MA 02115, USA. Constantine_Mitsiades@dfci.harvard.edu
    • Mol. Cancer Ther. 2007 Mar 1;6(3):1070-8.

    AbstractB-Raf is an important mediator of cell proliferation and survival signals transduced via the Ras-Raf-MEK-ERK cascade. BRAF mutations have been detected in several tumors, including papillary thyroid carcinoma, but the precise role of B-Raf as a therapeutic target for thyroid carcinoma is still under investigation. We analyzed a panel of 93 specimens and 14 thyroid carcinoma cell lines for the presence of BRAF mutations and activation of the mitogen-activated protein/ERK kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway. We also compared the effect of a B-Raf small inhibitory RNA construct and the B-Raf kinase inhibitor AAL881 on both B-Raf wild-type and mutant thyroid carcinoma cell lines. We found a high prevalence of the T1799A (V600E) mutation in papillary and anaplastic carcinoma specimens and cell lines. There was no difference in patient age, B-Raf expression, Ki67 immunostaining, or clinical stage at presentation between wild-type and BRAF(V600E) specimens. Immunodetection of phosphorylated and total forms of MEK and ERK revealed no difference in their phosphorylation between wild-type and BRAF(V600E) patient specimens or cell lines. Furthermore, a small inhibitory RNA construct targeting the expression of both wild-type B-Raf and B-Raf(V600E) induced a comparable reduction of viability in both wild-type and BRAF(V600E) mutant cancer cells. Interestingly, AAL881 inhibited MEK and ERK phosphorylation and induced apoptosis preferentially in BRAF(V600E)-harboring cells than wild-type ones, possibly because of better inhibitory activity against B-Raf(V600E). We conclude that B-Raf is important for the pathophysiology of thyroid carcinomas irrespective of mutational status. Small molecule inhibitors that selectively target B-Raf(V600E) may provide clinical benefit for patients with thyroid cancer.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.