-
- M B Maclver, A A Mikulec, S M Amagasu, and F A Monroe.
- Department of Anesthesia, Stanford University School of Medicine, California, USA. bruce.maclver@forsythe.stanford.edu
- Anesthesiology. 1996 Oct 1;85(4):823-34.
BackgroundRecent evidence for a presynaptic depression of glutamate release produced by volatile anesthetics prompted the current study of isoflurane and halothane effects on glutamate-mediated transmission in the mammalian central nervous system.MethodsElectrophysiologic recordings from CA1 neurons in rat hippocampal brain slices were used to measure anesthetic effects on glutamate-mediated excitatory postsynaptic potential (EPSP) amplitudes and paired pulse facilitation. Paired pulse facilitation is known to be altered when the calcium-dependent release of glutamate is depressed, but not when EPSP amplitudes are depressed by postsynaptic mechanisms.ResultsIsoflurane depressed EPSP amplitudes over a concentration range of 0.35-2.8 vol %, with a 50% depression (EC50) occurring at 1.0 vol % (0.71 rat minimum alveolar concentration). This depression was accompanied by an increase in paired-pulse facilitation of approximately 30% at 1.7 vol %, using interpulse intervals of 120 ms. Halothane depressed EPSP amplitudes in a concentration-dependent manner (0.3-2.4 vol %, EC50 = 1.1 minimum alveolar concentration; 1.3 vol %) and also increased facilitation by approximately 20% at 1.2 vol %. These effects persisted in the presence of 10 microM bicuculline, indicating that enhanced gamma-aminobutyric acid-mediated inhibition was not involved. The anesthetic-induced increase in facilitation and EPSP depression was mimicked by lowering extracellular calcium, which is known to depress glutamate release at these synapses. The postsynaptic glutamate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione depressed EPSP amplitudes with no change in facilitation.ConclusionsOur results confirm earlier findings that clinically relevant concentrations of volatile anesthetics depress glutamate-mediated synaptic transmission. The observed increases in synaptic facilitation support recent findings from biochemical and electrophysiologic studies indicating presynaptic sites of action contribute to anesthetic-induced depression of excitatory transmission. This anesthetic-induced reduction in glutamate release would contribute to the central nervous system depression associated with anesthesia by adding to postsynaptic depressant actions on glutamate receptors.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.