• Crit Rev Neurobiol · Jan 2006

    Review

    Hippocampal long-term synaptic plasticity and signal amplification of NMDA receptors.

    • John F MacDonald, Michael F Jackson, and Michael A Beazely.
    • Department of Physiology, Medical Sciences Building, 1 King's College, University of Toronto, Toronto Ontario M5S1A8, Canada. j.macdonald@utoronto.ca
    • Crit Rev Neurobiol. 2006 Jan 1;18(1-2):71-84.

    AbstractThe direction of plasticity at CA3-CA1 hippocampal synapses is determined by the strength of afferent stimulation. Weak stimuli lead to long-term depression (LTD) and strong stimuli to long-term potentiation (LTP), but both require activation of synaptic N-methyl-D-aspartate receptors (NMDARs). These receptors are therefore necessary and required for the induction of plasticity at CA3-CA1 synapses even though they carry little of the current responsible for the basal excitatory post-synaptic potential (EPSP). The influx of Ca(2+) via NMDARs triggers the subsequent and persistent changes in the expression of alpha-amino-3-hydroxy-5 methylisoxazole-4-proprionic acid receptors (AMPARs) and these receptors are responsible for the major part of the basal EPSP. The degree of activity of NMDARs is determined in part by extracellular Mg(2+) and by the co-agonists for this receptor, glycine and D-serine. During strong stimulation, a relief of the voltage-dependent block of NMDARs by Mg(2+) provides a positive feedback for NMDAR Ca(2+) influx into postsynaptic CA1 spines. In this review, we discuss how the induction of LTP at CA3-CA1 synapses requires further signal amplification of NMDAR activity. We discuss how the regulation of NMDARs by protein kinases and phosphatases is brought into play. Evidence is presented that Src family kinases (SFKs) play a "core" role in the induction of LTP by enhancing the function and expression of NMDARs. At CA3-CA1 synapses, NMDARs are largely composed of NR1 (NMDA receptor subunit 1)-NR2A or NR1-NR2B containing subunits. Recent, but controversial, evidence has correlated NR1-NR2A receptors with the induction of LTP and NR1-NR2B receptors with LTD. However, LTP can be induced by activation of either subtype of NMDAR and the ratio of NR2A:NR2B receptors has been proposed as an alternative determinant of the direction of synaptic plasticity. Many transmitters and signal pathways can modify NMDAR function and expression and, for a given stimulus strength, they can potentially lead to a change in the balance between LTP and LTD. As opposed to the "core" mechanisms of LTP and LTD, the resulting alterations in this balance underlie "meta-plasticity." Thus, in addition to their contribution to core mechanisms, we will also discuss how Src-family kinases could preferentially target NR1-NR2A or NR1-NR2B receptors to alter the relative contribution of these receptor subtypes to synaptic plasticity.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…