• Chest · Feb 1991

    Gas exchange during maximal upper extremity exercise.

    • T W Martin, R J Zeballos, and I M Weisman.
    • Department of Clinical Investigation, William Beaumont Army Medical Center, El Paso, TX.
    • Chest. 1991 Feb 1;99(2):420-5.

    Study Objectiveto characterize gas exchange and cardiopulmonary performance during maximal progressive arm crank exercise.DesignCardiopulmonary variables were measured and arterial blood gases were determined in blood samples obtained from an indwelling radial arterial catheter during arm crank exercise (34 watts/min). Arm crank exercise was compared to maximal leg exercise performed by a different but comparable group of subjects from a previous study.Participants19 healthy young (mean +/- SEM: 20 +/- 1 yr) black males.ResultsPeak arm crank exercise resulted in lower values compared to peak leg exercise for: power (129 +/- 2 vs 253 +/- 10 W), VO2 (2.17 +/- 0.04 vs 3.26 +/- 0.14 L/min); VCO2 (2.9 +/- 0.11 vs 4.32 +/- 0.17 L/min); HR (168 +/- 3 vs 189 +/- 3 beats/min); AT (1.15 +/- 0.05 vs 1.83 +/- 0.07 L/min); and VE (101 +/- 2 vs 144 +/- 8 L/min), respectively. Arm crank exercise (baseline vs peak) elicited an impressive improvement in PaO2 (85 +/- 1 to 97 +/- 1 mm Hg), no change in SaO2 (96 +/- 0.2 to 96 +/- 0.2 percent), no significant increase in P(A-a)O2 (3 +/- 0.7 to 5 +/- 0.9 mm Hg) and an appropriate trending decrease in VD/VT (0.22 +/- 0.01 to 0.17 +/- 0.01). Peak arm crank values were significantly different from peak cycle exercise for PaO2 (82 +/- 2.2 mm Hg), SaO2 (93 +/- 0.4 percent), P(A-a)O2 (21 +/- 1.9 mm Hg) and VD/VT (0.08 +/- 0.01). At comparable levels of VO2 for arm crank and cycle exercise (2.17 +/- 0.04 vs 2.26 +/- 0.08 L/min), significant differences were observed for PaO2 (97 +/- 1.4 vs 81 +/- 1.9 mm Hg); SaO2 (96 +/- 0.2 vs 94 +/- 0.4 percent); P(A-a)O2 (5 +/- 0.9 vs 14 +/- 1.5 mm Hg); and VD/VT (0.17 +/- 0.01 vs 0.08 +/- 0.01), respectively.ConclusionsMaximal arm crank exercise represents a submaximal cardiopulmonary stress compared to maximal leg exercise. The differences in gas exchange observed at peak exercise between arm crank and leg exercise for the most part reflect the lower VO2 achieved. However, the persistence of these gas exchange differences even at a comparable level of VO2 suggests that factors other than VO2 may be operative. These factors may include differences in alveolar ventilation, CO2 production, ventilation-perfusion inequality, diffusion, and control of breathing.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.