Cardiovascular engineering
-
The search for a load-independent index of myocardial contractility has been a focus for nearly 100 years. Nearly all of the parameters developed have yielded insight into cardiac function but their clinical utility has been limited. A new index, dsigma*/dt (max), has been proposed to be useful in the clinic. ⋯ There was also a significant correlation between dsigma*/dt (max) and dP/dt (max). With a strong correlation between the values of dsigma*/dt (max), dP/dt (max), and EDV in all five subjects, dsigma*/dt (max) is not load independent in the canine heart when preload is altered by a VCO. Further evaluation of this index is required to delineate the situations where dsigma*/dt (max) can be accurately applied.
-
A frequency domain distributed 55 segment arterial model was constructed from the reflection perspective to predict pressure waveforms in the large systemic arteries. At any node, the predicted pressure waveform was the combination of a forward propagating waveform and a number of repeatedly reflected waveforms from any possible sites. This approach ensured that any single reflected waveform could be traced back to its origin, and thus the causal-effect relation would be precisely known. ⋯ It was found that the model predicted pressure waveforms were most sensitive to the branch reflection coefficient, and this led to the adoption of the zero-forward reflection assumption at branches. The model-predicted pressure waveforms compared favorably with realistic blood pressure waveforms, especially in the upper limbs. For lower limbs, finer segmentation could further improve the predictions.
-
Randomized Controlled Trial
Alveolar recruitment strategy during cardiopulmonary bypass does not improve postoperative gas exchange and lung function.
Pulmonary dysfunction with impairment of lung function and oxygenation is one of the most serious problems in the early postoperative period after cardiac surgery. In this study we investigated the effect of alveolar recruitment strategy during cardiopulmonary bypass on postoperative gas exchange and lung function. This prospective randomized study included 32 patients undergoing elective myocardial revascularization with cardiopulmonary bypass. ⋯ Postoperative gas exchange, extravascular lung water and lung function showed no significant difference between the groups. Postoperative pulmonary function variables were lower in both groups compared to baseline values. In patients with normal preoperative pulmonary function, application of an alveolar recruitment strategy during cardiopulmonary bypass does not improve postoperative gas exchange and lung function after cardiac surgery.
-
The esophageal Doppler monitor (EDM) is a clinically useful device for minimally invasive assessment of cardiac output, preload, afterload, and contractility. An empirical model, based upon the logistic function, has been developed. Use of this model illustrates how the EDM could estimate the net effect of aortic and non-aortic contributions to inertia, resistance, and elastance within real time. ⋯ Furthermore, the effects of inertia, resistance, and elastance, on mean blood pressure during systole, can be quantified. These additional parameters could offer insight for clinicians, as well as researchers, and may be beneficial in further examining and utilizing clinical hemodynamics with the EDM. These additional measurements also underscore the need to integrate the EDM with existing and future monitoring equipment.
-
The objective of this 14-pig study was designed to determine the amount of lung ventilation obtainable by only rhythmic chest compression (100/min, 100 lbs). Tidal volume (TV), dead space (DS), and respiration rate (R) were measured with normal breathing and with rhythmic chest compression during ventricular fibrillation. The ratio of TV/DS was calculated in both cases. ⋯ With spontaneous breathing, the minute alveolar volume was 5.48 +/- 2.1 l/min. With only chest-compression breathing, the alveolar ventilation was -1.49 +/- 0.64 l/min. The negative minute alveolar volume and fractional ratio reveals that TV was less than the dead space indicating that chest-compression alone does not ventilate the lungs.