Cardiovascular engineering
-
The complexity of mathematical models describing the cardiovascular system has grown in recent years to more accurately account for physiological dynamics. To aid in model validation and design, classical deterministic sensitivity analysis is performed on the cardiovascular model first presented by Olufsen, Tran, Ottesen, Ellwein, Lipsitz and Novak (J Appl Physiol 99(4):1523-1537, 2005). This model uses 11 differential state equations with 52 parameters to predict arterial blood flow and blood pressure. ⋯ Small changes in sensitive parameters have a large effect on the model solution while changes in insensitive parameters have a negligible effect. This analysis was successfully used to reduce the effective parameter space by more than half and the computation time by two thirds. Additionally, a simpler model was designed that retained the necessary features of the original model but with two-thirds of the state equations and half of the model parameters.
-
Cerebral autoregulation (CA) is an most important mechanism responsible for the relatively constant blood flow supply to brain when cerebral perfusion pressure varies. Its assessment in nonacute cases has been relied on the quantification of the relationship between noninvasive beat-to-beat blood pressure (BP) and blood flow velocity (BFV). To overcome the nonstationary nature of physiological signals such as BP and BFV, a computational method called multimodal pressure-flow (MMPF) analysis was recently developed to study the nonlinear BP-BFV relationship during the Valsalva maneuver (VM). ⋯ In TBI patients there were strong correlations between phases of ABP and CPP oscillations (R = 0.99, P < 0.0001) and, thus, between ABP-BFV and CPP-BFV phase shifts (P < 0.0001, R = 0.76). By repeating the MMPF 4 times on data of TBI subjects, each time on a selected cycle of spontaneous BP and BFV oscillations, we showed that MMPF had better reproducibility than traditional autoregulation index. These results indicate that the MMPF method, based on instantaneous phase relationships between cerebral blood flow velocity and peripheral blood pressure, has better performance than the traditional standard method, and can reliably assess cerebral autoregulation dynamics from ambulatory blood pressure and cerebral blood flow during supine rest conditions.
-
The radial artery (RA) pressure waveform is commonly used to reconstruct the central aortic pressure waveform. Because the RA pressure waveform has been used as input to this process, its features that are dependent on the local arterial properties can influence the final reconstructed aortic waveform. In this study, we determined the effects of altered upper limb pulse wave velocity (PWV) and local wave reflection parameters on RA pressure waveform augmentation (RA-AIx). ⋯ The relative weighing of CA-AIx, Gamma and PWV(infinity) on RA-AIx were 3:2:1, respectively. The AIx of RA is determined to an equal extent by the input and local factors. Interpretation of the AIx of the RA and the reconstructed central aortic waveform should be made in the context of this relationship.
-
The objective of this study was to measure the force exerted by 83 trained CPR rescuers and 104 untrained adult laypersons (college students and staff). A bathroom scale was used to measure the force exerted by these subjects with their hands on the bathroom scale in the CPR position. ⋯ Of the trained rescuers, 60% pressed with more than 125 lbs, whereas only 37% of the laypersons pressed with more than 125 lbs. In view of the American Heart Association (AHA) guidelines (2000) to depress the chest 1.5 to 2 inches, which requires 100-125 lbs, it would appear that most laypersons do not exert enough force for effective CPR.
-
A new optical device was developed that measures blood pressure noninvasively, in small human subjects (neonates and premature infants) and small animals (Roeder RAR. Transducer for indirect measurement of blood pressure in small human subjects and animals, Purdue University, BME; 2003.: xi, 50 p.). The ability of this device to measure oxygen saturation enhances its value. ⋯ A small blood-pressure cuff was used to render the optical path bloodless. A comparison of the transmittance and reflectance methods for measuring oxygen saturation was made. %SaO(2) measurements ranged from 4% to 100%. It was found that both the transmittance and reflectance methods can be used to measure %SaO(2) reliably in situations with or without a pulse.