Science advances
-
Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease characterized by the progressive loss of motor neurons in the spinal cord and brain. In particular, autosomal dominant mutations in the superoxide dismutase 1 (SOD1) gene are responsible for ~20% of all familial ALS cases. The clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas9) genome editing system holds the potential to treat autosomal dominant disorders by facilitating the introduction of frameshift-induced mutations that can disable mutant gene function. ⋯ Genome editing reduced mutant SOD1 protein by >2.5-fold in the lumbar and thoracic spinal cord, resulting in improved motor function and reduced muscle atrophy. Crucially, ALS mice treated by CRISPR-mediated genome editing had ~50% more motor neurons at end stage and displayed a ~37% delay in disease onset and a ~25% increase in survival compared to control animals. Thus, this study illustrates the potential for CRISPR-Cas9 to treat SOD1-linked forms of ALS and other central nervous system disorders caused by autosomal dominant mutations.
-
Antibody therapy targeting cytotoxic T lymphocyte-associated antigen 4 (CTLA4) elicited survival benefits in cancer patients; however, the overall response rate is limited. In addition, anti-CTLA4 antibody therapy induces a high rate of immune-related adverse events. The underlying factors that may influence anti-CTLA4 antibody therapy are not well defined. ⋯ Coadministration of an sMIC-neutralizing monoclonal antibody with the anti-CTLA4 antibody alleviated treatment-induced colitis in sMIChi animals and generated a cooperative antitumor therapeutic effect by synergistically augmenting innate and adoptive antitumor immune responses. Our findings imply that a new combination therapy could improve the clinical response to anti-CTLA4 antibody therapy. Our findings also suggest that prescreening cancer patients for serum sMIC may help in selecting candidates who will elicit a better response to anti-CTLA4 antibody therapy.
-
The 17 Sustainable Development Goals (SDGs) call for a comprehensive new approach to development rooted in planetary boundaries, equity, and inclusivity. The wide scope of the SDGs will necessitate unprecedented integration of siloed policy portfolios to work at international, regional, and national levels toward multiple goals and mitigate the conflicts that arise from competing resource demands. In this analysis, we adopt a comprehensive modeling approach to understand how coherent policy combinations can manage trade-offs among environmental conservation initiatives and food prices. ⋯ We conclude that Sustainable Consumption and Production policies (goal 12) are most effective at minimizing trade-offs and argue for their centrality to the formulation of coherent SDG strategies. We also find that alternative socioeconomic futures-mainly, population and economic growth pathways-generate smaller impacts on the eventual achievement of land resource-related SDGs than do resource-use and management policies. We expect that this and future systems analyses will allow policy-makers to negotiate trade-offs and exploit synergies as they assemble sustainable development strategies equal in scope to the ambition of the SDGs.
-
Although significantly more money is spent on the conservation of tigers than on any other threatened species, today only 3200 to 3600 tigers roam the forests of Asia, occupying only 7% of their historical range. Despite the global significance of and interest in tiger conservation, global approaches to plan tiger recovery are partly impeded by the lack of a consensus on the number of tiger subspecies or management units, because a comprehensive analysis of tiger variation is lacking. We analyzed variation among all nine putative tiger subspecies, using extensive data sets of several traits [morphological (craniodental and pelage), ecological, molecular]. ⋯ Our results support recognition of only two subspecies: the Sunda tiger, Panthera tigris sondaica, and the continental tiger, Panthera tigris tigris, which consists of two (northern and southern) management units. Conservation management programs, such as captive breeding, reintroduction initiatives, or trans-boundary projects, rely on a durable, consistent characterization of subspecies as taxonomic units, defined by robust multiple lines of scientific evidence rather than single traits or ad hoc descriptions of one or few specimens. Our multiple-trait data set supports a fundamental rethinking of the conventional tiger taxonomy paradigm, which will have profound implications for the management of in situ and ex situ tiger populations and boost conservation efforts by facilitating a pragmatic approach to tiger conservation management worldwide.