Lancet neurology
-
Duchenne muscular dystrophy is an X-linked disease caused by the absence of functional dystrophin in the muscle cells. Major advances have led to the development of gene therapies, tools that induce exon skipping, and other therapeutic approaches, including treatments targeting molecular pathways downstream of the absence of functional dystrophin. However, glucocorticoids remain the only treatment unequivocally shown to slow disease progression, despite the adverse effects associated with their long-term use. ⋯ Several compounds with promising results in early-phase clinical trials have not met their efficacy endpoints in late-phase trials, but the clinical development of many other compounds is ongoing. The current landscape is complicated by the number of compounds in various stages of development, their various mechanisms of action, and their genotype-specific applicability. The difficulties of clinical development that arise from both the rarity and variability of Duchenne muscular dystrophy might be overcome in the future by use of sensitive biomarkers, natural history data, and ameliorated trial designs.
-
The prognostic value of glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase L1 (UCH-L1) as day-of-injury predictors of functional outcome after traumatic brain injury is not well understood. GFAP is a protein found in glial cells and UCH-L1 is found in neurons, and these biomarkers have been cleared to aid in decision making regarding whether brain CT should be performed after traumatic brain injury. We aimed to quantify their prognostic accuracy and investigate whether these biomarkers contribute novel prognostic information to existing clinical models. ⋯ US National Institutes of Health, National Institute of Neurologic Disorders and Stroke, US Department of Defense, One Mind, US Army Medical Research and Development Command.
-
Large-scale mapping studies have identified 236 independent genetic variants associated with an increased risk of multiple sclerosis. However, none of these variants are found exclusively in patients with multiple sclerosis. They are located throughout the genome, including 32 independent variants in the MHC and one on the X chromosome. ⋯ No single variant is necessary or sufficient to cause multiple sclerosis; instead, each increases total risk in an additive manner. This combined contribution from many genetic factors to disease risk, or polygenicity, has important consequences for how we interpret the epidemiology of multiple sclerosis and how we counsel patients on risk and prognosis. Ongoing efforts are focused on increasing cohort sizes, increasing diversity and detailed characterisation of study populations, and translating these associations into an understanding of the biology of multiple sclerosis.