Lancet neurology
-
Status epilepticus is a common neurological emergency that is characterised by prolonged or recurrent seizures without recovery between episodes and associated with substantial morbidity and mortality. Prompt recognition and targeted therapy can reduce the risk of complications and death associated with status epilepticus, thereby improving outcomes. The most recent International League Against Epilepsy definition considers two important timepoints in status epilepticus: first, when the seizure does not self-terminate; and second, when the seizure can have long-term consequences, including neuronal injury. ⋯ If status epilepticus continues, management should entail second-line and third-line treatment agents, supportive EEG monitoring, and admission to an intensive care unit. Future research to study early seizure detection, rescue protocols and medications, rapid treatment escalation, and integration of fundamental scientific and clinical evidence into clinical practice could shorten seizure duration and reduce associated complications. Furthermore, improved recognition, education, and treatment in patients who are at risk might help to prevent status epilepticus, particularly for patients living in low-income and middle-income countries.
-
Randomized Controlled Trial Multicenter Study
Safety and efficacy of intravenous recombinant human prourokinase for acute ischaemic stroke within 4·5 h after stroke onset (PROST-2): a phase 3, open-label, non-inferiority, randomised controlled trial.
Intra-arterial prourokinase has been shown to be a promising thrombolytic agent in patients with acute ischaemic stroke. Given the global shortage of thrombolytics, we aimed to assess the non-inferiority of intravenous recombinant human prourokinase compared with alteplase in patients with acute ischaemic stroke who were ineligible for or who refused endovascular thrombectomy. ⋯ For the Chinese translation of the abstract see Supplementary Materials section.
-
Randomized Controlled Trial Multicenter Study
Safety and efficacy of intrathecal antibodies to Nogo-A in patients with acute cervical spinal cord injury: a randomised, double-blind, multicentre, placebo-controlled, phase 2b trial.
Spinal cord injury results in permanent neurological impairment and disability due to the absence of spontaneous regeneration. NG101, a recombinant human antibody, neutralises the neurite growth-inhibiting protein Nogo-A, promoting neural repair and motor recovery in animal models of spinal cord injury. We aimed to evaluate the efficacy of intrathecal NG101 on recovery in patients with acute cervical traumatic spinal cord injury. ⋯ EU program Horizon2020; Swiss State Secretariat for Education, Research and Innovation; Wings for Life; the Swiss Paraplegic Foundation; and the CeNeReg project of Wyss Zurich (University of Zurich and Eidgenössische Technische Hochschule Zurich).
-
Multicenter Study Comparative Study
Differential diagnosis and comparison of diagnostic algorithms in children and adolescents with autoimmune encephalitis in Spain: a prospective cohort study and retrospective analysis.
The usefulness of current diagnostic approaches in children with suspected autoimmune encephalitis is unknown. We aimed to assess the diagnosis of autoimmune encephalitis in clinical practice and to compare the performance of two international diagnostic algorithms (one intended for patients of any age [general], the other intended for paediatric patients), with particular emphasis on the evaluation of patients with probable antibody-negative autoimmune encephalitis because this diagnosis suggests that immunotherapy should be continued or escalated but is difficult to establish. ⋯ For the Spanish translation of the abstract see Supplementary Materials section.
-
Amyotrophic lateral sclerosis caused by SOD1 variants: from genetic discovery to disease prevention.
Pathogenic variants in the superoxide dismutase 1 (SOD1) gene were the first identified genetic cause of amyotrophic lateral sclerosis (ALS), in 1993. This discovery enabled the development of transgenic rodent models for studying the biology of SOD1 ALS. ⋯ The successful development of genetically targeted therapies to reduce SOD1 expression, together with a better understanding of pre-symptomatic disease and the discovery of neurofilament light protein as a susceptibility/risk biomarker that predicts phenoconversion, has ushered in a new era of trials that aim to prevent clinically manifest SOD1 ALS. The 30-year journey from gene discovery to gene therapy has not only uncovered the pathophysiology of SOD1 ALS, but has also facilitated the development of biomarkers that should aid therapy development for all forms of ALS.