Lancet neurology
-
Over the past decade, in-vivo MRI studies have provided many invaluable insights into the neural substrates underlying autism spectrum disorder (ASD), which is now known to be associated with neurodevelopmental variations in brain anatomy, functioning, and connectivity. These systems-level features of ASD pathology seem to develop differentially across the human lifespan so that the cortical abnormalities that occur in children with ASD differ from those noted at other stages of life. ⋯ Novel analytical approaches are also being developed to facilitate the translation of findings from the research to the clinical setting. In the future, the insights provided by human neuroimaging studies could contribute to biomarker development for ASD and other neurodevelopmental disorders, and to new approaches to diagnosis and treatment.
-
Autism spectrum disorder is typical of the majority of neuropsychiatric syndromes in that it is defined by signs and symptoms, rather than by aetiology. Not surprisingly, the causes of this complex human condition are manifold and include a substantial genetic component. ⋯ Despite remarkable genetic heterogeneity, evidence is emerging for converging pathophysiology in autism spectrum disorder, but how this notion of convergent pathways will translate into therapeutics remains to be established. Leveraging genetic findings through advances in model systems and integrative genomic approaches could lead to the development of new classes of therapies and a personalised approach to treatment.
-
Huntington's disease is a genetic neurodegenerative disorder with symptoms that are linked to the progressive dysfunction and neuronal death in corticostriatal circuits. The causative gene (mutated HTT) is widely expressed outside the CNS and several peripheral signs of disease, including weight loss and increased proinflammatory signalling, are often seen; however, their importance in the pathophysiology of Huntington's disease is not clear. ⋯ Links between peripheral biology and neurodegeneration have also been shown in other chronic neurodegenerative diseases, suggesting that modulation of these peripheral targets can offer new approaches to therapeutic development. Treatments targeted to tissues and organs outside the CNS might therefore substantially improve the quality of life of patients with Huntington's disease, even in the absence of disease-modifying effects.
-
Spinocerebellar ataxias are dominantly inherited neurodegenerative diseases. As potential treatments for these diseases are being developed, precise knowledge of their natural history is needed. We aimed to study the long-term disease progression of the most common spinocerebellar ataxias: SCA1, SCA2, SCA3, and SCA6. Furthermore, we aimed to establish the order and occurrence of non-ataxia symptoms, and identify predictors of disease progression. ⋯ EU FP6 (EUROSCA), German Ministry of Education and Research (BMBF; GeneMove), Polish Ministry of Science, EU FP7 (NEUROMICS).