Lancet neurology
-
Genome-wide association studies have revolutionised the genetic analysis of multiple sclerosis. Through international collaborative efforts involving tens of thousands of cases and controls, more than 100 associated common variants have now been identified. ⋯ The functional implications of these associated variants are mostly unknown; however, early work has shown that several variants have effects on splicing that result in meaningful changes in the balance between different isoforms in relevant tissues. Including the well established risk attributable to variants in genes encoding human leucocyte antigens, only about a quarter of reported heritability can now be accounted for, suggesting that a substantial potential for further discovery remains.
-
Malformations of cortical development are common causes of developmental delay and epilepsy. Some patients have early, severe neurological impairment, but others have epilepsy or unexpected deficits that are detectable only by screening. The rapid evolution of molecular biology, genetics, and imaging has resulted in a substantial increase in knowledge about the development of the cerebral cortex and the number and types of malformations reported. ⋯ Genetic testing needs accurate assessment of imaging features, and familial distribution, if any, and can be straightforward in some disorders but requires a complex diagnostic algorithm in others. Because of substantial genotypic and phenotypic heterogeneity for most of these genes, a comprehensive analysis of clinical, imaging, and genetic data is needed to properly define these disorders. Exome sequencing and high-field MRI are rapidly modifying the classification of these disorders.