Lancet neurology
-
Randomized Controlled Trial Multicenter Study
Pramipexole in patients with early Parkinson's disease (PROUD): a randomised delayed-start trial.
In models of dopaminergic neuronal loss, the dopamine agonist pramipexole has exhibited neuroprotective properties. The Pramipexole On Underlying Disease (PROUD) study was designed to identify whether early versus delayed pramipexole initiation has clinical and neuroimaging benefits in patients with Parkinson's disease (PD). ⋯ Boehringer Ingelheim GmbH.
-
Randomized Controlled Trial
Siponimod for patients with relapsing-remitting multiple sclerosis (BOLD): an adaptive, dose-ranging, randomised, phase 2 study.
Siponimod is an oral selective modulator of sphingosine 1-phosphate receptor types 1 and type 5, with an elimination half-life leading to washout in 7 days. We aimed to determine the dose-response relation of siponimod in terms of its effects on brain MRI lesion activity and characterise safety and tolerability in patients with relapsing-remitting multiple sclerosis. ⋯ Novartis Pharma AG.
-
Fragile X syndrome, the most common heritable form of cognitive impairment, is caused by epigenetic silencing of the fragile X (FMR1) gene owing to large expansions (>200 repeats) of a non-coding CGG-repeat element. Smaller, so-called premutation expansions (55-200 repeats) can cause a family of neurodevelopmental phenotypes (attention deficit hyperactivity disorder, autism spectrum disorder, seizure disorder) and neurodegenerative (fragile X-associated tremor/ataxia syndrome [FXTAS]) phenotypes through an entirely distinct molecular mechanism involving increased FMR1 mRNA production and toxicity. Results of basic cellular, animal, and human studies have helped to elucidate the underlying RNA toxicity mechanism, while clinical research is providing a more nuanced picture of the range of clinical manifestations. Advances of knowledge on both mechanistic and clinical fronts are driving new approaches to targeted treatment, but two important necessities are emerging: to define the extent to which the mechanisms contributing to FXTAS also contribute to other neurodegenerative and medical disorders, and to redefine FXTAS in view of its differing presentations and associated features.