European journal of nuclear medicine and molecular imaging
-
Eur. J. Nucl. Med. Mol. Imaging · Apr 2020
Dose escalation of an Evans blue-modified radiolabeled somatostatin analog 177Lu-DOTA-EB-TATE in the treatment of metastatic neuroendocrine tumors.
To evaluate the safety and efficacy of 177Lu-DOTA-EB-TATE, a radiolabeled somatostatin analog modified by Evans blue, at escalating doses, was used to increase tumor retention in patients with progressive metastatic neuroendocrine tumors (NETs). ⋯ 177Lu-DOTA-EB-TATE is well tolerated and is more effective than 177Lu-DOTATATE. Both 1.85 GBq (50 mCi) and 3.7 GBq (100 mCi) doses appear to be more effective than 1.11 GBq (30 mCi) dose. Further investigation with more cycles of 177Lu-DOTA-EB-TATE treatment and longer follow-up is warranted.
-
Eur. J. Nucl. Med. Mol. Imaging · Apr 2020
PRRT neuroendocrine tumor response monitored using circulating transcript analysis: the NETest.
Peptide receptor radionuclide therapy (PRRT) is effective for metastatic/inoperable neuroendocrine tumors (NETs). Imaging response assessment is usually efficient subsequent to treatment completion. Blood biomarkers such as PRRT Predictive Quotient (PPQ) and NETest are effective in real-time. PPQ predicts PRRT efficacy; NETest monitors disease. We prospectively evaluated: (1) NETest as a surrogate biomarker for RECIST; (2) the correlation of NETest levels with PPQ prediction. ⋯ PPQ predicts PRRT response in 97%. NETest accurately monitors PRRT response and is an effective surrogate marker of PRRT radiological response. NETest decrease identified responders and correlated (> 97%) with the pretreatment PPQ response predictor. CgA was non-informative.
-
Eur. J. Nucl. Med. Mol. Imaging · Apr 2020
Biodistribution and first clinical results of 18F-SiFAlin-TATE PET: a novel 18F-labeled somatostatin analog for imaging of neuroendocrine tumors.
PET/CT using 68Ga-labeled somatostatin analogs (SSA) targeting somatostatin receptors (SSR) on the cell surface of well-differentiated neuroendocrine tumors (NET) represents the clinical reference standard for imaging. However, economic and logistic challenges of the 68Ge/68Ga generator-based approach have disadvantages over 18F-labeled compounds. Here, we present the first in-human data of 18F-SiFAlin-TATE, a novel 18F-labeled, SSR-targeting peptide. The aim was to compare the intra-individual biodistribution, tumor uptake, and image quality of 18F-SiFAlin-TATE to the clinical reference standard 68Ga-DOTA-TOC. ⋯ The favorable characteristics of 18F-SiFAlin-TATE with a high image quality, the kit-like labeling procedure, and the promising clinical performance enable improved logistics and diagnostic possibilities for PET imaging of NET. Our first clinical results warrant further systematic studies investigating the clinical use of 18F-SiFAlin-TATE in NET patients.
-
Eur. J. Nucl. Med. Mol. Imaging · Apr 2020
Evaluation of [68Ga]Ga-DATA-TOC for imaging of neuroendocrine tumours: comparison with [68Ga]Ga-DOTA-NOC PET/CT.
Recently, the new hybrid chelator DATA (6-amino-1,4-diazepine-triacetate) has been introduced, which has the advantage of high yield and radiolabelling of DATA-based octreotide derivative (TOC) at room temperature in contrast to tetraazacyclododecane-1,4,7,10-tetraacetate (DOTA) that needs 95 °C for effective labelling. However, the diagnostic potential of DATA-TOC has not been studied with other chelators in humans. The aim of this study was to compare the diagnostic efficacy of [68Ga]Ga-DATA-TOC with [68Ga]Ga-DOTA-NOC (which is the current standard for imaging neuroendocrine tumours (NET)) in patients of gastroenteropancreatic neuroendocrine tumours (GEP-NETs). ⋯ [68Ga]Ga-DATA-TOC PET/CT imaging produced results that were comparable with [68Ga]Ga-DOTA-NOC. It, thus, has potential utility as an effective and safe alternative to 68Ga-DOTA-NOC with the added benefit of ease, cost-effective and improved yield of instant kit-type synthesis.
-
Eur. J. Nucl. Med. Mol. Imaging · Mar 2020
The management impact of 68gallium-tris(hydroxypyridinone) prostate-specific membrane antigen (68Ga-THP-PSMA) PET-CT imaging for high-risk and biochemically recurrent prostate cancer.
To determine the impact on clinical management of patients with high-risk (HR) prostate cancer at diagnosis and patients with biochemical recurrence (BCR) using a new kit form of 68Ga-prostate-specific membrane antigen (PSMA), namely tris(hydroxypyridinone) (THP)-PSMA, with positron emission tomography-computed tomography (PET-CT). ⋯ 68Ga-THP-PSMA PET-CT influences clinical management in significant numbers of patient with HR prostate cancer pre-radical treatment and is associated with PSA. Management change also occurs in patients with BCR and is associated with PSA and Gleason score, despite lower scan positivity rates at low PSA levels < 0.5 μg/L.